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Low to High Confinement Transtion

In many magnetically confined fusion experiments like tokamaks and stellarators,
plasma may undergo a spontaneous transition to a turbulence suppressed regime. Such
transitions from a low-confinement (L) mode to a high-confinement (H) mode are known
as L-H transitions.

The H-mode is characterized by steep gradients in density and temperature at the
plasma edge.

[http://www.ipp.mpg.de/]
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Transport Reduction by Zonal Flow

From theoretical and experimental works, it is now widely believed that stable coherent
structures such as shear flows suppress cross-field turbulent transport and leads to the
confinement improvement.
Random walk argument gives the diffusion coefficient

D ∼ ∆x2

∆t
(1)

Collisional transport in a uniform magnetic field: D ∼ νρ2
L

Convective cell (a specific low-freq. eigenmode of the 2d fluid) D ∼ T
eB

e∆ϕ
T

: (Bohm
diffusion)

Interaction between a zonal flow and turbulent fluctuations is a key physics to understand
the L-H transition.
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Quasi Two Dimensional Flow
In two dimensional fluids the net upscale energy flux from small scale turbulent modes to
create large scale coherent structures can dominate the classical Kolmogorov cascade
to dissipative scales.

In the presence of the strong magnetic field, electrostatic fluctuations are confined
almost in two-dimensionl plane perpendicular to the magnetic field.

E
(k

)

k

dissipation

energy input

inertial range k-5/3

E
(k

)

k dissipation

energy input

k-5/3

k-3

inverse cascade

forward cascade

(a) (b)

Workshop on Turbulence and Coherent Structures, January 2006 – p.4/25



Low Dimensional Dynamical Model

A low dimensional dynamical model is a reduction of a fluid system (infinite degree of
freedom) to a system of rate equations of some macroscopic variables described by
coupled ODEs (few degree of freedom).

Recently, Ball et al. (2002) derived a low dim. model for confinement transitions by
integrating the reduced MHD equations. The model consists of three macroscopic state
variables: P is the potential energy production, N is the turbulent kinetic energy, F is the
shear flow kinetic energy,

ε
dP

dt
= q − γPN (2)

dN

dt
= γPN − αFN − βN2 (3)

dF

dt
= αFN − µ(P, N)F + ϕF 1/2 (4)
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Bifurcation and Singularity Theory

Bifurcation and singularity theory of the derived dynamical model predicts ...

Symmetry breaking term ϕ from drag (friction) force dissolves the pitchfork
bifurcation.

Hysteretic transition to a high confinement state.

Spontaneous reversal of shear flow direction.

Supersuppresion of turbulence at low power input.

The model will provide an economical tool to predict transitions over parameter space
when validated against numerical simulation or real experimental data.
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Drift Wave Mechanism
Tokamak edge fluctuations are often ascribed to drift wave turbulence.

Drift waves occur universally in magnetized plasmas producing the dominant mechanism
for the transport of particles, energy, and momentum across magnetic field lines.

Density and temperature gradients in magnetized plasma give rise to electron and ion
diamagnetic currents across the magnetic field. The drift velocity associated with these
currents give rise to collective oscillations called drift wave.

In the presence of the resistivity, etc, the potential and the density is out of phase, this
leads instability of damping → turbulence

drift wave mechanism showing ExB convection 
in a nonuniform magnetized plasma
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Drift Wave Ordering and Assumptions

To derive the drift wave equations, let us consider an electrostatic fluctuations much
slower than the ion cyclotron frequency ωci in a magnetized (with magnetic field B0∇z)
and inhomogeneous plasma. If the parallel phase velocity ω/kz lies between the
electron and ion thermal speed, the resonant wave-particle interaction is small and a
linear wave is known to exist in such a plasma. The fluctuations, or drift wave propagate
with a speed approximately equal to the electron diamagnetic drift velocity.

ε =
1

ωci

∂

∂t
∼ 1

kzvTe

∂

∂t
∼ ρs

˛

˛

˛

˛

∇
„

ln
n0

B0

«˛

˛

˛

˛

∼ |ζ|
ωci

(5)

where ζ = ∇×Vi is the ion vorticity, ρs =
“

Te

mi

”1/2
/ωci is the ion sound Larmor radius.

We also assume that the electron temperature is much larger than the ion temperature,
and use cold ion approximation.
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Resistive Drift Wave Model
In the drift wave ordering, ion and electron motion perpendicular to the magnetic field
can be described by the E × B drift, the polarization drift, and the diamagnetic drift,

V⊥,i = εVE + ε2Vp =
−∇ϕ ×∇z

B0

+
d

dt
(−∇ϕ), (6)

V⊥,e = εVE + εVd =
−∇ϕ ×∇z

B0

+
∇pe ×∇z

enB0

, (7)

where ϕ is the electrostatic potential, and d
dt

= ∂
∂t

+ VE · ∇ is the E × B convective
derivative. The electron continuity equation gives

d

dt
n =

d

dt
(n0 + n1) =

1

e
∂zjz, (8)

and the quasi-neutrality demands ∇ · (nVi − nVe) = 0 which leads

mn

B0

d

dt
∇2ϕ = B0∂zjz . (9)

This equation is equivalent to the ion vorticity equation.
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Resistive Drift Wave Model
We assume that ion inertia along the magnetic field is negligible. Then the parallel
current is determined by the Ohm’s law (electron momentum equation),

E +
1

en
∇pe = ηj. (10)

If parallel heat conductivity is sufficiently large, electron may be treated as an isothermal
fluid pe = nTe. The parallel current is obtained to be

jz = − 1

η
∂z

„

ϕ − Te

e
ln n

«

(11)

Substiting jz into the continuity and vorticity equations, and normalizing variables as

x → ρsx, ωcit → t, eϕ/Te → ϕ, n1/n0 → n, (12)

we finally obtain the so-called Hasegawa-Wakatani (HW) equations for the drift wave
turbulence.
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Hasegawa-Wakatani Equations

∂

∂t
ζ + {ϕ, ζ} = α(ϕ − n) (13)

∂

∂t
n + {ϕ, n} = α(ϕ − n) − κ

∂ϕ

∂y
(14)

where {a, b} ≡ ∂xa∂yb − ∂ya∂xb is the Poisson bracket, ζ = ∇2ϕ is the vorticity. The
HW equations have two parameters;

κ ≡ −∂x ln n0 is the scale of the background density profile. κ is assumed to be
constant, which means exponential profile n0 ∝ exp(−κx).

α ≡ − Te

ηn0ωcie
2
∂2

z is the operator which describes parallel electron behavior. In

the two-dimension model, α is reduced to be an parameter defined by

α =
Tek2

z

ηn0ωcie
2

for a single parallel mode number kz .
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Hasegawa-Wakatani Equations

The HW model spans two limit according to the adiabaticity parameter.

Adiabatic limit α → ∞ The HW equations reduced to the Hasegawa-Mima (HM) or
Charney-Obukhov equation,

∂

∂t
(ϕ − ζ) − {ϕ, ζ} + κ

∂ϕ

∂y
= 0. (15)

Electron moves fast enough along the field line to obey the Boltzmann relation,

n = n0(x) exp

„

eϕ

Te

«

. (16)

Hydrodynamic limit α → 0 Vorticity evolution decouples with density. The equations
become the Euler equation and a passive scalar equation for the density
perturbation.
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Linear Dispersion Relation

ω + iγ = i
b

2

»

(1 − 4iω∗

b
)1/2 − 1

–

, b = α
1 + k2

k2
, ω∗ = κ

ky

1 + k2
(17)
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In the adiabatic limit, the
dispersion relation be-
comes ω = ω∗, while it has
a finite γ (unstable) for non
adiabatic case.

ky ∼ 1, kx ∼ 0 mode is
most unstable.
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Conservation Laws
The system has two dynamical invariants: the total energy E and the generalized
enstrophy W , defined as follows,

E =
1

2

Z

(n2 + |∇ϕ|2)dx, W =
1

2

Z

(n − ζ)2dx. (18)

where dx = dxdy. These quantities evolve with time as,

dE

dt
= Γn − Γα,

dW

dt
= Γn (19)

where

Γn = −κ

Z

n
∂ϕ

∂y
dx, Γα = −α

Z

(n − ϕ)2dx. (20)

In the inertial range, a dual cascade of energy and enstrophy will be found as in the usual
two-dimensional fluid turbulence. Energy may condensate in a large scale structure.
This is the main difference between two-dimensional and three-dimension turbulence.
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Self-org. via Variational Principle

In the 2D Navier-Stokes turbulence, energy cascade inversely to low wave number and
create large scale coherent structure. Let us consider the self-organized state in the HM
model. A minimum enstrophy state with the constraint of fixed energy will be obtained by
the variational principle,

δ(W − λE) = 0, (21)

where λ is the Lagrange multiplier. The Euler-Lagrange equation is obtained to give,

∇2ζ + (1 − λ)ζ = 0, (22)

ζ = (1 − λ)(n + ln n0). (23)

If we assume ∂y = 0, we obtain the solution as

ζ = ζ0 sin
√

1 − λx, (24)

which suggests a zonal flow. The lowest eigenvalue gives the minimum enstrophy state,
which has only one period.
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Fluid Simulations
Turbulence driven zonal flows have been observed in the nonlinear simulations of
various fluid turbulence model

Hasegawa and Wakatani (1987)
3D Simulation of HW model including magnetic curvature and shear in cylindrical
geometry successefully generated shear

Carreras et al. (1993)
3D resistive interchange mode
Electrostatic/Electromagnetic
Background shear flow for symmetry-breaking and profile modification by
turbulence

Guzdar et al. (1993)
3D drift resistive ballooning

Sugama and Horton (1994)
3D resistive interchange
Comparison between their low dimensional dynamical model
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Numerical Setup

The numerical code solves Hasegawa-Wakatani equation given by,

∂ζ

∂t
+ {ϕ, ζ} = α(ϕ − n) + Dζ∇2ζ (25)

∂n

∂t
+ {ϕ, n} = α(ϕ − n) − κ

∂ϕ

∂y
+ Dn∇2n, (26)

in the slab geometry of size (2L)2 = (2π/∆k)2 with ∆k = 0.15. Small dissipations
(viscosity Dζ and diffusion coefficient Dn) are added to assure numerical stability.

Periodic boundary in y direction and periodic or Dirichlet boundary in x direction,

ϕ(±L) = 0, n(±L) = 0, ζ(±L) = 0. (27)

Time stepping algorithm is a 3rd order explicit linear multistep method.

Finite difference method is used for spatial discretization. Evaluation of the Poisson
bracket term is performed by the Arakawa’s method (Arakawa (1966)), which has third
order acurracy and conserves energy and enstrophy.
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Self-organized State in HM Model
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Left panel shows the final state of the stream function. Azimuthally (y) elongated
structure can be seen although ky is not zero.
Radial (x) mode number is determined to balance the nonlinear and the linear terms

which demands kc ' (k/ϕ)1/3.

Rhines (1975); A. Hasegawa et al. (1979)
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Linear Growth and Nonlin. Saturation
The figure shows the typical behavior of the simulation. Initial small perturbations linearly
grow by the drift wave instability until nonlinearity comes into play a role. Nonlinear
saturation occurs at the level where the drift wave drive and the resistive dissipation
balance.
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Saturated State (Periodic B.C.)

No anisotropic structure (zonal flow) is observed.
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Energy and Enstrophy Spectra
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Intermediate cases (α = 0.1, 0.7)
do not show inverse energy
cascade.

Density spectrum depend on α

Power law indices [Camargo et al. (1995)]

α Ek EV
k En

k Uk

0.1 -2.0 -2.9 -1.8 -1.6
0.7 -3.0 -3.2 -2.8 -1.7
10 -3.9 -3.6 -5.4 -2.2
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Saturated State (Fixed B.C.)
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Background density profile is screened and turbulent drive is quenched
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Modification of HW and HM Model
Because the zonal modes (ky = kz = 0) do not contribute to the parallel current, the
resistive coupling term should have the form,

α(ϕ̃ − ñ) (28)

where we defined the non-zonal component f̃ = f − 〈f〉, and the zonal parts

〈f〉 ≡ 1/L
R L
0

fdy (L is the periodic length in y).

The zonal components evolve through

∂

∂t
〈f〉 − ∂

∂x

fi

f
∂ϕ

∂y

fl

= 0. (29)

where f stands for n and ζ.

In the HM limit (α → ∞), the non-zonal component of the density responds to the
non-zonal potential, and the zonal density vanishes,

n = ñ = ϕ̃, 〈n〉 = 0. (30)
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Zonal Flow in MHW Model
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MHW model.

Zonal flow suppresses radial transport.

Zonal flow does not exists in the hydro-
dynamic case.
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Summary and Conclusion

An interplay between direct numerical simulation and low dimensional dynamical model
will provide us deeper insight of the physics of the L-H transition.

Key ingredient is an interaction between large scale zonal flow and turbulent fluctuations.

We can produce a zonal flow by a simple electrostatic 2-dimensional slab resistive drift
wave model.

Does Hasegawa-Wakatani model have enough physics?

electrostatic – electomagnetic

2 dimensional – 3 dimensional

slab – cylindrical

large aspect ratio limit – toroidal curvature

background velocity shear

magnetic shear

nonlinear viscosity
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