Gyrokinetic Simulations of Tearing Instability

July 6, 2009

R. NUMATA^{A,†}, W. Dorland^A, N. F. Loureiro^B, B. N. Rogers^C, A. A. Schekochihin^D, T. Tatsuno^A

† rnumata@umd.edu

A) Center for Multiscale Plasma Dynamics, Univ. Maryland
B) EURATOM/UKAEA Fusion Associateion, Culham Science Centre
C) Dept. Phys. & Astron., Dartmouth College
D) Rudolf Peierls Centre for Theor. Phys., Univ. Oxford

Outline

- Magnetic Reconnection and Tearing Instability
- Basic Theory for Tearing Instability
- Gyrokinetics
 - Collisions and Resistivity
 - AstroGK gyrokinetics code
- Numerical Simulations
 - Electron Physics
 - Ion Physics
 - Kinetic effect (ion temperature)
 - MHD limit
- Summary

Magnetic Reconnection

Magnetic reconnection is ubiquitous in plasmas

- Magnetic reconnection converts magnetic field energy into high speed plasma flows, heating of plasmas, and energetic particles.
- Sawtooth oscillations, island growth due to tearing mode, disruptions in fusion experimental devices (Degradation of confinement).
- Magnetospheric substorms, solar flares in astrophysical situation.

Magnetic Reconnection

Magnetic reconnection is a classic example where multiple physics (scales) are involved

- Physics to break flux-freezing is necessary for field lines to change its topology: primarily by collisions (resistivity).
- In collisionless environments, time scale of reconnection based on resistivity is far too slow to explain realistic explosive phenomena.
- Resistive spatial scale falls below kinetic scales (MHD theory is not valid).
- Global structure drastically changes depending on microscopic processes.

Questions

- What determines time scale of reconnection?
- What provides mechanism for field lines to reconnect?

Tearing Instability

- Tearing instability is a resistive instability of current sheet configuration
- Spontaneous onset of reconnection process
- Linear stage
- Standard boundary layer or singular perturbation problem

Without resistivity and inertia, solution is singular

Background current profile

$$\frac{\mathrm{d}^{2}\psi}{\mathrm{d}x^{2}} - \left(k_{y}^{2} + \frac{\psi_{0}'}{\psi_{0}'''}\right)\psi = 0 \tag{1}$$
Inner Region
Outer Region (Ideal)
Flux -
Flow --
Flow --

Tearing Instability

- Tearing instability is a resistive instability of current sheet configuration
- Spontaneous onset of reconnection process
- Linear stage
- Standard boundary layer or singular perturbation problem

Without resistivity and inertia, solution is singular

Background current profile

$$\frac{\mathrm{d}^{2}\psi}{\mathrm{d}x^{2}} - \left(k_{y}^{2} + \frac{\psi_{0}'}{\psi_{0}'''}\right)\psi = 0 \tag{1}$$
Inner Region
Outer Region (Ideal)
Flux -
Flow --

Tearing Instab. Theory (resistive MHD)^a

Time Scales (normalized by $au_{
m A}=a/V_{
m A}$)

- Alfvén time (parallel to the reconnecting field): $\tau_{\rm H}/\tau_{\rm A} \equiv 1/ka$
- Sesistive time scale: $\tau_{\rm R}/\tau_{\rm A} \equiv \mu_0 a V_{\rm A}/\eta \equiv S$: Lundquist number

Assumptions

Time scale separations

$$1/\tau_{\rm R} \ll \gamma \ll 1/\tau_{\rm H}$$
 (2)

Scale separations

$$\ell \ll a$$
 (3)

where ℓ is the resistive current layer width Dispersion relation (matching two solutions)

$$\Delta' a = -\frac{\pi}{8} \gamma^{5/4} \tau_{\rm H}^{1/2} \tau_{\rm R}^{3/4} \frac{\Gamma((\lambda^{3/2} - 1)/4)}{\Gamma((\lambda^{3/2} + 5)/4)} \tag{4}$$

 $\lambda = \gamma \tau_{\rm H}^{2/3} \tau_{\rm R}^{1/3}$, Δ' is a jump of ψ' providing instability criterion ($\Delta' > 0$).

^aFurth, Killeen, and Rosenbluth, Phys. Fluids **6**, 459 (1963)

Tearing Instab. Theory (More Physics)

- Solution Hall effect (Ion inertia) $^{a} \sim d_{i}$ Alfvén wave dispersion (Whistler)
- Pressure effect ^b (Ion Sound) $\sim \rho_s$ Alfvén wave couples to sound wave
- Sinite Larmor Radius (FLR) ^c $\sim \rho_{i(e)}$ Alfvén wave dispersion (KAW)
- Tensorial pressure ~ $ho_{e(i)}$ break flux-freezing
- Solution Electron inertia $^{\sf d} \sim d_{
 m e}$ break flux-freezing

Some of the effects can exist in fluid models, while some are essentially kinetic.

Gyrokinetics

- No ad-hoc inclusion of detailed physics
 → validation of various fluid models
- Collision physics Do not assume resistivity
- Disadvantages: heavy, · · ·

^ae.g. Terasawa, GRL (1983), Fitzpatrick & Porcelli, PoP (2004)
 ^bCoppi *et al.*, Nuclear Fusion (1966).
 ^cPorcelli, PRL (1991)
 ^dSchep *et al.* (1994)

Gyrokinetics

- Reduced kinetic model 5 dimensional phase space
- Strong guide field (B_0) allows to separate out fast cyclotron motion
- Already multiscale
- Note: two-dimensional magnetic reconnection or tearing instability dynamics primarily independent of the guide field

Gyrokinetics: Basic equations

The distribution function of particles is given by $f = \left(1 - \frac{q\phi}{T_0}\right) f_0 + h$, where $f_0 = n_0/(\sqrt{\pi}v_{\rm th})^3 \exp(-v^2/v_{\rm th}^2)$ is the Maxwellian, and the thermal velocity is given by

 $v_{\rm th} = \sqrt{2T_0/m}$. The equations to solve are the gyrokinetic equation for $h = h(\mathbf{R}, V_{\perp}, V_{\parallel})$,

$$\frac{\partial h}{\partial t} + V_{\parallel} \frac{\partial h}{\partial Z} + \frac{1}{B_0} \left\{ \langle \chi \rangle_{\mathbf{R}}, h \right\} - \langle C(h) \rangle_{\mathbf{R}} = q \frac{f_0}{T_0} \frac{\partial \langle \chi \rangle_{\mathbf{R}}}{\partial t}, \tag{5}$$

 $\chi = \phi - \boldsymbol{v} \cdot \boldsymbol{A}$ and the field equations for $\phi(\boldsymbol{r})$, $A_{\parallel}(\boldsymbol{r})$, and $\delta B_{\parallel}(\boldsymbol{r})$,

$$n_{\rm i} = n_{\rm e} \qquad \Leftrightarrow \qquad \qquad \sum_{s} \left[-\frac{q_s^2 n_{0s} \phi}{T_{0s}} + q_s \int \langle h_s \rangle_{\boldsymbol{r}} \,\mathrm{d}\boldsymbol{v} \right] = 0, \tag{6}$$

$$(\nabla \times \boldsymbol{B})|_{\parallel} = \mu_0 j_{\parallel} \quad \Leftrightarrow \qquad \qquad \nabla_{\perp}^2 A_{\parallel} = -\mu_0 \sum_s q_s \int \langle h_s \rangle_{\boldsymbol{r}} v_{\parallel} d\boldsymbol{v}$$
(7)

$$\nabla \cdot \left(\mathbf{P} + \mathbf{I} \frac{B_0 \delta B_{\parallel}}{\mu_0} \right) = 0 \qquad \Leftrightarrow \quad B_0 \nabla_{\perp} \delta B_{\parallel} = -\mu_0 \nabla_{\perp} \cdot \sum_s \int \langle m \boldsymbol{v}_{\perp} \boldsymbol{v}_{\perp} h_s \rangle_{\boldsymbol{r}} \, \mathrm{d}\boldsymbol{v}.$$

Collision Operator

Recently, linearized collision operators for gyrokinetic simulations, which satisfies physical requirements are established and implemented in AstroGK^a.

The operators are the pitch-angle scattering (Lorentz), the energy diffusion, and moments conserving corrections to those operators for like-particle collisions. Electron-ion collisions consists of pitch angle scattering by background ions and ion drag are also included.

We, here, mainly discuss the electron-ion collisions since it contributes to resistivity. The operator is given by (in Fourier space)

$$C_{\rm ei}(h_{\rm e,\boldsymbol{k}}) = \nu_{\rm ei} \left(\frac{v_{\rm th,e}}{V}\right)^3 \left(\frac{1}{2} \frac{\partial}{\partial \xi} (1-\xi^2) \frac{\partial h_{\rm e,\boldsymbol{k}}}{\partial \xi} - \frac{1}{4} (1+\xi^2) \frac{V^2}{v_{\rm th,e}^2} k_{\perp}^2 \rho_{\rm e}^2 h_{\rm e,\boldsymbol{k}} + \frac{2V_{\parallel} J_0(\alpha_{\rm e}) u_{\parallel,\rm i,\boldsymbol{k}}}{v_{\rm th,e}^2} f_{0\rm e}\right)$$
(9)

We examine how this collision operator relates with resistivity which decays the current.

^a Abel *et al*, Phys. Plasmas **15**, 122509 (2008), arXiv:0808.1300; Barnes *et al*, accepted Phys. Plasmas (2009), arXiv:0809.3945v2.

Spitzer Resistivity

From the fluid picture current decays due to collisional resistivity as

$$\frac{\partial j}{\partial t} = -\frac{\eta}{\mu_0} k^2 j, \tag{10}$$

and the decay rate is $\tau_{\rm decay}^{-1} = (\eta/\mu_0)k^2$. Using the Spitzer resistivity given by $\eta = m_{\rm e}/(1.98\tau_{\rm e}n_{\rm e}e^2)$ where $\tau_{\rm e} = 3\sqrt{\pi}/(4\nu_{\rm ei})$, the decay rate is casted into the following form,

$$\tau_{\rm decay}^{-1} = C\nu_{\rm ei}(d_{\rm e}k)^2 \tag{11}$$

where the constant $C = 4/(1.98 \times 3\sqrt{\pi}) \approx 0.380$.

Figures show dependence of decay rate on ν and $d_{\rm e}k$. Numerical estimated proportionality constant agrees with Spitzer's value within 5% error.

AstroGK

Publicly available at http://www.physics.uiowa.edu/~ghowes/astrogk/ (paper in preparation)

- Eulerian (not particle)
- Sourier spectral in coordinate space (x,y)
- Periodic boundary in x and y
- Gaussian quadrature for velocity space integral
- Time integral: Implicit Euler for collisions Adams-Bashforth (3rd) for nonlinear terms
- Parallelized using MPI library
- NERSC (Franklin), NCSA (Jaguar), TACC (Ranger), etc

Simulation Setting

Parameters

$$r \equiv \lambda_{\rm i}/a,$$
 $\sigma \equiv m_{\rm e}/m_{\rm i},$ (12)

$$\tau \equiv T_{0i}/T_{0e}, \qquad \beta_e \equiv n_0 T_{0e}/(B_g^2/2\mu_0)$$
 (13)

 λ_{i} is typical ion scale, B_{g} is the guide magnetic field

$$\rho_{i}/\lambda_{i} = \tau^{1/2}, \qquad d_{i}/\lambda_{i} = \beta_{e}^{-1/2}, \qquad \rho_{s}/\lambda_{i} = \left(\frac{\Gamma}{2}(1+\tau)\right)^{1/2}, \qquad (14)$$

$$\rho_{e}/\lambda_{i} = \sigma^{1/2}, \qquad d_{e}/\lambda_{i} = \beta_{e}^{-1/2}\sigma^{1/2}, \qquad (15)$$

$$l(\nu)$$
Change collisionality ν to vary current layer width ℓ

$$\ell$$

$$d_{e}$$

$$\lambda_{i}$$

$$d_{e}$$

MHD

Electron Physics

UNI (()] ≠ 5/3)Y OF

- Transition to collisionless reconnection independent of collisions
- Electron inertia mediated $-d_e$ sets lower bound of scale
- Difference between GK & 2F MHD may be ascribed to the treatment of pressure

Ion Physics

- Not MHD even if ion scale $\ll a$
- $\beta_{\rm e}$ slows down tearing growth
- Approaches to MHD limit as β decreases

Ion temperature

Cold ion ($\tau = 10^{-4}$) for different r (r = 0.2: electron phys., r = 0.02: ion phys.) $\rightarrow \rho_i$ becomes irrelevant ($< d_e$)

Ion temperature has no effect ($\rho_{\rm i} \lesssim \rho_{\rm s}$)

MHD limit

Low beta $\beta_e = 10^{-3}$, Cold ion $\tau = 10^{-4}$ case

Summary

- Magnetic reconnection and tearing instability are very good example of multiscale physics.
- We have performed collisionless and collisional tearing instability simulations, and have scanned for ν_{ei} .
- We have observed transition from collisional regime (collision dependent growth rate) to collisionless regime (collision independent growth rate).
- Sequation of state need to be considered carefully not simply $p\propto
 ho^{\Gamma}$
- Understanding ion physics is rather difficult pressure effect and Hall effect are tangled
- Ion temperature seems not playing significant role in the regimes considered
- GK simulation can also capture correct resistive MHD limit

Regimes of two fluid tearing instability obtained by Ahedo and Ramos [PPCF (2009)]

