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Abstract

A three-dimensional Hall-Magnetohydrodynamic (Hall-MHD) simulation code has

been developed to study the self-organization process in a two-fluid plasma. An appre-

ciable amount of flow with a component perpendicular to the magnetic field is created in

the two-fluid plasma. An adjustment of the ion helicity, which includes the Hall term,

characterizes the two-fluid relaxation process.
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1.Introduction

The Hall effect in a two-fluid plasma is represented by a singular perturbation term

scaled by the ion skin depth, bringing about far richer structures created by flow-field

coupling. Recent theory[1] predicts creation of a double Beltrami (DB) field that is in

marked contrast with the Taylor relaxed state of the single-fluid MHD; the former may

have a variety of flows.

In this paper, we study the dynamical process of the self-organization in two-fluid

plasmas. We have developed a nonlinear three-dimensional (3D) simulation code. Starting

from an unstable initial condition, through violent dynamics, total fields are rearranged,

and new structure is reorganized. We can characterize such transient processes by some

macroscopic quantities, that are “ideal constants of motion”, i.e. energy and helicities.

The ideal constants of motion conserve in the ideal limit. Dissipation, however, allows

“adjustment” in these quantities. The adjustment of the ion helicity may play a role to

create flows perpendicular to the magnetic field[2].

In quasi-static turbulence, perpendicular flows are described by a statistical average

of fluctuations (Reynolds stress)[3]. Similar for generation of magnetic field, fluctuations

can yield dynamo effects. A lot of studies related to those processes have been done in the

single-fluid model. However, how the Hall effect alters those processes is still undeveloped
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(in recent studies[4], the Hall effects for dynamo processes have been addressed). In the

self-organization process where drastic change of global structure occurs, we cannot define

the statistical mechanical ensemble of fluctuations.

2.Theoretical background

2.1 Double Beltrami equilibrium

In an incompressible two-fluid model, the macroscopic evolution equations of a plasma

can be cast into coupled vortex equations,

∂

∂t
ωj −∇× (U j × ωj) = 0 (j = 1, 2), (1)

where j = 1, 2 indicate an electron and an ion. A pair of generalized vorticities and the

corresponding flows are defined by

ω1 = B, ω2 = B + ε∇× V ,
U 1 = V − ε∇×B, U 2 = V ,

(2)

where B is the magnetic field, V is the ion flow velocity, and ε ≡ δi/L (L: system size,

δi ≡ c/ωpi: ion collisionless skin depth, c: speed of light, ωpi: ion plasma frequency).

The simplest equilibrium solution to (1) is given under the “Beltrami condition”, that

demands alignment of the vorticities along the corresponding flows;

B = a(V − ε∇×B), B + ε∇× V = bV , (3)

where a, b are constants. The general solution to (3) is given by a linear combination of

two Beltrami fields,

B = C+G+ + C−G−, V = (a−1 + ελ+)C+G+ + (a−1 + ελ−)C−G−, (4)

where G± are the Beltrami functions satisfying ∇×G± = λ±G±, and C± are constants.

The parameters λ±, which are the eigenvalues of the curl operators, characterize the

spatial scales of the vortices G±.

In the vortex dynamics equations (1), the general steady states are given by

U j × ωj = ∇ϕj (j = 1, 2), (5)

where ϕj is a certain scalar field corresponding to the energy density. The Beltrami

condition (3) gives a special class of solution such that both side of (5) equal to zero. The

“generalized Bernoulli condition demands that the energy density is uniform in space.
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From the original electron and ion momentum equations, we find that the generalized

Bernoulli condition is given by the relation,

V 2

2
+ p = const. (6)

2.2 Variational principle

The self-organization process of a plasma into relaxed states may be discussed by a

variational principle. Taylor[5] assumed the minimization of the magnetic energy under

the constraint of the magnetic helicity, and obtained the force-free state. This model is

based on the “selective decay” implying that one of the constants of motion of the ideal

limit decays faster than the others.

The variational principle for the two-fluid MHD requires a more generalized and rigorous

arguments[2]. There are three global ideal invariants:

E =
1

2

∫
(B2 + V 2)dx, (7)

H1 =

∫
A ·Bdx, (8)

H2 =

∫
(A + εV ) · (B + ε∇× V )dx, (9)

representing the total energy, the electron helicity, and the ion helicity. The minimization

of a generalized enstrophy (measure of the complexity),

F =
1

2

∫
|∇ × (A + εV )|2dx, (10)

with keeping E,H1, and H2 constant is carried out through the variation

δ(F − µ0E − µ1H1 − µ2H2) = 0, (11)

where µ0, µ1, µ2 are Lagrange multipliers. The general solution to the Euler-Lagrange

equation is given by a linear combination of three Beltrami functions, which is not an

equilibrium in general. The adjustment between three ideal constants of motion,

δ(E − µ′1H1 − µ′2H2) = 0, (12)

where µ′1, µ′2 are Lagrange multipliers, leads the DB field. The relaxation process is

realized by minimizing perturbations, which is scaled by the generalized enstrophy F ,

with appropriate adjustments of macroscopic variables E,H1, H2.

3.Simulation model
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To test the two-fluid self-organization in a more general dynamical framework, we

consider a compressible, dissipative Hall-MHD plasma, governed by

∂n

∂t
= −∇ · (nV ), (13)

∂(nV )

∂t
= −∇ · (nV V )−∇p + (∇×B)×B

+
1

Re

(∇2V +
1

3
∇(∇ · V )), (14)

∂B

∂t
= ∇×

[
V ×B − ε

n
(∇×B)×B

]
+

1

Rm

∇2B, (15)

∂p

∂t
= −(V · ∇)p− γp∇ · V

+
1

Re

|∇ × V |2 +
4

3Re

|∇ · V |2 +
1

Rm

|∇ ×B|2, (16)

where n is the number density, p is the pressure, Re, Rm are the Reynolds number and the

Magnetic Reynolds number, and γ is the ratio of the specific heat. We have normalized

variables by the scale length L and an appropriate measure of the magnetic field B0 and

the density n0 (the ion mass mi is assumed to be unity) as x → Lx,B → B0B, n →
n0n, V → VAV , t → τAt, p → (B2

0/µ0)p, where VA ≡ B0/
√

µ0min0 is the Alfvén velocity,

τA ≡ L/VA. The quasi-neutrality n = ni = ne, and zero electron pressure are assumed.

The equations are solved by the finite difference and the Runge-Kutta-Gill methods.

The simulation domain is a rectangular box with size 2a × 2a × 2πR, surrounded by

a rigid perfect conducting wall. The system is periodic along the z axis. The boundary

conditions in x, y directions are

n ·B = 0, n× (∇×B) = 0, V = 0 at x, y = ±a. (17)

To assure tangential components of the electric field vanish, we set ε = 0 at the wall.

In order to confirm the validity of the simulation code, we have solved dispersion re-

lations of purely transversal wave in a periodic domain. In an ideal limit, the disper-

sion relation for small perturbations around a uniform equilibrium, (B0 = (0, 0, B0),

V 0 = 0, n0, p0 are constants), is given by

ω =
VA

2

[
±εk2 ±

√
ε2k4 + 4k2

]
, (18)

which describes the Alfvén whistler wave. In the limit ε → 0, we recover the dispersion

relation of the shear Alfvén wave. Figure 1 shows the dispersion relation (18) for ε =

0, 0.1, 0.05. The Hall term yields a dispersion effect to split the Alfvén wave in the
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electron and ion branches. The numerical results show good agreements with analytical

curves.

4.Nonlinear simulations

The initial condition for nonlinear simulation was a 2D force free equilibrium that is

also an equilibrium of the single-fluid model[6];

Bx = − 1

k0

(k1B1 cos k2x sin k1y + k2B2 cos k1x sin k2y), (19)

By =
1

k0

(k2B1 sin k2x cos k1y + k1B2 sin k1x cos k2y), (20)

Bz = B1 cos k2x cos k1y + B2 cos k1x cos k2y, (21)

where B1, B2 are the amplitudes of two kinds of Fourier modes, k1 = n1π/(2a), k2 =

n2π/(2a), k0 =
√

k2
1 + k2

2, and n1, n2 are arbitrary integers. A uniform density n0 =

1, and uniform pressure are assumed. The amplitude of the uniform pressure is given

by a parameter β =
∫

pdx/
∫

B2dx. The initial condition has a flow such that V 0 =

(0, 0,MABz/
√

n0), where MA is the Alfvén Mach number.

We carried out two simulation runs. The simulation domain is implemented on 129 ×
129 × 256 point grids. The parameters are β = 3, MA = 0.5, and (a) ε = 0.1, (b)

ε = 0. Figure 2 shows isosurfaces of the toroidal magnetic field at an initial time and

t = 50τA, 75τA, 100τA. Two twisted columns in different color represent the columns

of Bz = ±0.3. Because the initial condition is unstable against the ideal kink mode,

initially assigned perturbations grow exponentially and plasma becomes turbulent. The

magnetic reconnection process leads rearrangement of plasma configuration in Alfvénic

time scale. The plasma settled into a twisted state after the turbulent relaxation process,

and it flows both in the toroidal and poloidal direction as time goes. Figure 3 shows

the ratio of the perpendicular and the parallel components of the kinetic energy. The

perpendicular component remains more than 10% for ε = 0.1, while it does only few

percent for ε = 0. This result agrees with the theoretical prediction, and highlights

the difference from the Taylor relaxation in the single-fluid MHD. The simulation result

demonstrates creation of quasi-static stable state (∂t ' 0), where the energy density

(p + 1
2
V 2) is almost homogenized (fluctuation of the energy density is small, |∇(p +

1
2
V 2)|/|j × B| ' 0.1). Hence, the homogeneity of the Beltrami parameters implies the

creation of the DB field. In Fig. 4, we show the distribution of the Beltrami parameters

a, b in the poloidal plane. The figures show that a, b are almost uniform in the magnetic

columns.

We have investigated the variational principle in the Hall-MHD plasma. Figure 5 shows
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the time evolution of the macroscopic quantities: E, H1, H ′
2 ≡ H2 −H1, and

F ′ =
1

2

∫
|∇ × V |2dx, (22)

normalized by the initial values for the case (a). The minimization of (10) or (22) will

give the same result. The energy and two helicities monotonically decrease due to the

dissipations. However, the dissipation rate of the ion helicity is faster than that of oth-

ers. Since the ion helicity includes the highest order derivative term (V · ∇ × V ), it is

selectively adjusted during the relaxation process. The generalized enstrophy increases in

the relaxation phase because it is not an ideal constants of motion. After the relaxation

phase t ' 20 ∼ 40τA, it decreases faster than other three quantities. The relaxed state is

characterized not by minimizing the energy, but by minimizing the generalized enstrophy.

5.Summary

We have developed a Hall-MHD simulation code in a 3D rectangular domain, and

have studied the self-organization process of a flow-field coupled state. Comparing the

relaxed state in the two-fluid model with that in the single-fluid model, an appreciable

flow with a component perpendicular to the magnetic field is created. The perpendicular

flow highlights the distinct character of the two-fluid relaxed state (the DB state). The

relaxation process have also been investigated by means of the time evolution of the

macroscopic quantities. Since the ion helicity decays faster than the energy, the selective

decay concepts of the energy cannot work in the two-fluid model. The enstrophy (a

measure of fluctuations) minimization leads the relaxation. During the relaxation process,

the ion helicity (the most fragile macroscopic quantity) is severely adjusted to obtain the

DB state.

In the two-fluid relaxation, the ion helicity plays an essential role for the relaxation

process. The ion helicity includes the Hall term, and its counterpart in the single-fluid

model is the cross helicity HC =
∫

V ·Bdx. The relaxation model due to the variational

principle by use of the cross helicity only leads the single Beltrami magnetic field (the

Taylor state) and the parallel flow. Thus, we conclude that the Hall term generates the

perpendicular flow in the two-fluid plasmas. Physically, the Hall current is induced by

deviation of ion motions from electron motions. The Beltrami condition demands this

Hall current to support the perpendicular flows.
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Figure 1: Dispersion relations of the Alfvén whistler wave.
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Figure 2: Isosurfaces of the toroidal magnetic field.
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Figure 3: Ratio of components of the kinetic energy.
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Figure 4: Distribution of the Beltrami parameters a, b in the poloidal plane. The figures

show that a, b are almost uniform in the magnetic columns.
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Figure 5: Time evolution of the macroscopic quantities. The enstrophy minimization

with the selective adjustment of the ion helicity characterizes the relaxation in the

two-fluid plasma.
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