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Abstract

Multiscale hierarchy is intrinsic in collsionless plasmas, where various kinetic effects
having their own scales play important roles. Gyrokinetics and the gyrokinetic code
AstroGK are introduced to study multiscale phenomena in plasmas. An application of
the gyrokinetic simulation using AstroGK to magnetic reconnection as an example of
multiscale phenomenon is discussed.

1 Introduction

Plasmas observed in fusion experiments or in wide varieties of astrophysical situations such
as the galaxy clusters, the interstellar medium, the solar corona, solar winds, the Earth’s
magnetosphere are typically in high temperature or in low density. Since collisions can be
rare in such plasmas, deviations from thermal equilibrium can be maintained relatively long
times. In thermally non-equilibrium plasmas, effects due to particle pictures of plasmas called
kinetic effects play crucial roles on plasma dynamics. Examples of the kinetic effects include
inertia of ions and electrons having intrinsic scales of inertial skin depths, and finite Larmor
radius (FLR) effects of ions and electrons. These effects usually generate fine structures in
velocity space, therefore enhance dissipations due to collisions even though collisionality is
considered to be low.

Nonlinear phenomena in kinetic plasmas usually exhibit multiscale structures where var-
ious kinetic effects working at their intrinsic spatial scales are inter-related. The gyrokinetic
approach is well-suited to study kinetic dynamics of plasmas. Gyrokinetics is a limit of ki-
netic model that describes the low-frequency dynamics of weakly collisional plasmas. It is
derived by averaging the kinetic Vlasov-Landau equation and Maxwell’s equation over the
fast cyclotron motion, thus it omits the fast MHD waves, the cyclotron resonance, but retains
FLR effects, and collisionless wave-particle interactions via the Landau resonance.

The theoretical foundation of gyrokinetics has been developed extensively over the past
four decades, and gyrokinetics is now broadly employed for numerical studies of turbulence
driven by microinstabilities in laboratory plasmas. It has also been recently recognized
that the gyrokinetic approach is appropriate for the study of astrophysical plasmas. Taking
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advantage of the knowledge and computational techniques developed in the simulation of
turbulence in fusion plasmas, we have developed a gyrokinetic simulation code, AstroGK [1],
specifically for the study of astrophysical problems and basic properties of plasmas.

In this paper, we first present our approach to study multiscale phenomena in plasmas:
gyrokinetics and gyrokinetic simulation using AstroGK. AstroGK has already proven its use-
fullness in a number of studies. Among others, we show our recent result on the tearing
instability as a typical example of multiscale phenomena in plasmas even though the result
is still in preliminary linear stage.

2 Gyrokinetics and AstroGK

In this section, we present the gyrokinetic-Maxwell (GK-M) system of equations solved in
AstroGK, and brief overview of the code.

We first assume that scale separations in space and time are well satisfied such that small
fluctuations are locally embedded in a background plasma which is slowly varying spatially
and temporally. We consider a temporally constant mean magnetic field B0 = B0b̂0. In the
presence of a mean magnetic field, we can adopt the gyrokinetic ordering and average over the
fast cyclotron motion to reduce the Vlasov–Maxwell equations to the GK-M equations; see
Howes et al. [2] and Schekochihin et al. [3] for derivations of these equations expressly intended
for the study of astrophysical plasmas. We also assume spatially uniform background for the
sake of simplicity.

Under the gyrokinetic ordering, the distribution function of particles up to the first order
is given by

fs =

(
1− qsϕ

T0s

)
f0s + hs, (1)

where s = i, e (stands for ions and electrons) is the species label, f0s = n0s/(
√
πvth,s)

3 exp(−v2/v2th,s)
is the zeroth-order, equilibrium Maxwellian distribution function. The first-order part of the
distribution function is composed of the Boltzmann response term, and the gyro-center dis-
tribution function hs defined in the gyro-center coordinate (Rs,Vs) where the coordinate
transform is given by

Rs =r +
v × ẑ

Ωs

, Vs =v. (2)

Upon averaging over the gyro-phase, the gyrokinetic equation evolves hs = hs(Xs, Ys, Zs, V∥,s, V⊥,s, t):

∂hs

∂t
+ V∥,s

∂hs

∂Zs

+
1

B0

{
⟨χ⟩Rs

, hs

}
=

qsf0s
T0s

∂⟨χ⟩Rs

∂t
+ C(hs), (3)

where parallel and perpendicular subscripts refer to directions with respect to the mean
magnetic field. The gyrokinetic potential is given by χ = ϕ− v ·A, and the linear collision
term is represented by C(hs). The angle bracket ⟨ · ⟩Rs denotes the gyro-average at fixed
gyro-center coordinate Rs:

⟨F (r)⟩Rs =
1

2π

∮
F

(
Rs +

Vs × Ẑ

Ωs

)
dΘs, (4)
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where Vs = (V⊥,s, V∥,s,Θs). (The gyro-average at fixed particle coordinate ⟨ · ⟩r can also be
defined by switching roles of r and Rs.)

In the GK-M system, the electromagnetic fields are specified by the three scalar functions
ϕ(r, t), A∥(r, t), and δB∥(r, t)

1 according to:

B =∇⊥A∥ × ẑ + δB∥ẑ, E =−∇ϕ− ∂A

∂t
. (5)

Maxwell’s equations in the gyrokinetic limit reduce to the quasi-neutrality condition, and the
parallel and perpendicular components of Ampère’s law:∑

s

[
−q2sn0s

T0s

ϕ+ qs

∫
⟨hs⟩rdv

]
= 0, (6)

−∇2
⊥A∥ = µ0

∑
s

qs

∫
⟨V∥,shs⟩rdv, (7)

B0∇⊥δB∥ = −µ0∇⊥ ·
∑
s

∫
⟨mV⊥,sV⊥,shs⟩rdv. (8)

We refer the reader to [4] for the explicit form of the collision operator used in the code, as
it has a rather cumbersome form. We mention here the basic properties of the operator. The
operator is based on the linearized Landau collision operator transformed into the gyro-center
coordinate. It has second-order velocity derivatives providing diffusion in velocity space and
conserving terms which include integrations over velocity space. It is constructed to satisfy
Boltzmann’s H-theorem and the conservation of particles, momentum, and energy. It contains
both like-species collisions and inter-species collisions, but the inter-species collisions account
only for the collisions of electrons with one species of ions with large mass. Note that the
linearized collision operator for a given species can be made independent of the first-order
evolution of any other species. The theoretical basis of the collision operator is discussed in
detail in [5].

AstroGK is a Eulerian initial value solver for the GK equation in five-dimensional phase
space. It employs a pseudo-spectral algorithm to discretize the gyrokinetic equation in the
spatial coordinates (x, y), an upwind finite-difference scheme in the z direction. Velocity
space integrals in two dimensional velocity space are calculated using Gaussian quadrature
rules. Time integration is made using the 3rd-order Adams-Bashforth for the nonlinear
term. The linearized collision operator is treated by the first-order implicit Euler scheme
with Sherman-Morrison formula for the moment-conserving corrections.

AstroGK is parallelized using MPI, and shows good parallel performance on various cutting
edge supercomputers. Parallel performance is measured by taking the weak and strong
scalings. The weak scaling is probed by holding the computational work per processing core
constant while the number of cores, thus the total problem size, is increased. On the other
hand, the strong scaling is probed by holding the problem size constant while the number
of processing core is increased. Boths tests are performed on Kraken Cray XT5 system at
the National Institute for Computational Sciences at the University of Tennessee. Kraken

1δB∥ = (∇⊥ ×A⊥)z. We use the Coulomb gauge, which leads to ∇⊥ ·A⊥ = 0 with the ordering. Then,
we can write A⊥ = ∇⊥ς × ẑ, and δB∥ = −∇2

⊥ς in terms of a single scalar function ς.
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consists of 8256 computer nodes each having 12 processing cores, resulting in 99,072 compute
cores in total.

Figure 1 shows the weak and strong scalings. From the weak scaling result, we observe
that AstroGK follows the ideal scaling until the number of processors (Nproc) equals to 12,288
with slight degradation of performance due to the increase of communication forNproc > 1000.
From the strong scaling, we also observe the ideal scaling up to Nproc = 24, 576. Significant
performance loss occurs only at Nproc = 49, 152.

Figure 1: Parallel performance scaling of AstroGK on Kraken Cray XT5 system at NICS, the
University of Tennessee. The left panel shows the weak scaling, and the right panel shows
the strong scaling. Nearly ideal scalings are observed up to 10, 000 ∼ 20, 000 processors.

3 Magnetic reconnection as an example of multiscale

phenomena

The tearing instability is important in magnetic fusion devices, where it drives the formation
of magnetic islands that can significantly degrade heat and particle confinement. Solar flares
and substorms in the Earth’s magnetosphere are some of the many other contexts where
tearing plays a crucial role, includeing magnetic reconncetion, explosive energy release, and
large-scale reconfiguration of the magnetic field.

The evolusion of the tearing instability critically depends on the relationship between the
width of the current layer, δ, where the frozen-flux condition breaks down and reconnection
takes place, and the length scales characteristic of kinetic or non-magnetohydrodynamic
(MHD) effects, such as the ion and electron skin-depth, di and de, the ion sound Larmor
radious, ρSe, and the ion and electron Larmor radii, ρi and ρe. For, sufficiently large electron-
ion collision frequency, νe, the width of the reconnection layer well exceeds all of these non-
MHD scales and the mode is expected to be well described by resistive MHD theory [6]. In
many plasmas of interest, however, this is not the case: a decrease in the collisionality of the
plasma leads to a decrease in the resistivity, causing the current layer width to shrink until
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it reaches or falls below the largest relevant non-MHD scale.

3.1 Problem setup

We set up an initial sheared magnetic field

B = B0ẑ +Beq
y (x)ŷ (9)

where B0 is the background magnetic guide field and Beq
y is the in-plane, reconnecting com-

ponent. A super-imposed perturbation onto the equilibrium magnetic field will grow because
of the tearing instability.

We scan in collisionality and use the Sptizer’s formula to calculate the plasma resistivity
η, recast in terms of the Lundquist number, S = µ0aVA/η = 2.63(νeτA)

−1(de/a)
−2, where VA

is the Alfvén velocity corresponding to the peak value of Beq
y and τA ≡ a/VA is the Alfvén

time. Other relevant quantities are:

ρi = τ 1/2ρSe
√
2, di = β−1/2

e ρSe
√
2,

ρe = σ1/2ρSe
√
2, de = β−1/2

e σ1/2ρSe
√
2.

(10)

σ ≡ me/mi, τ ≡ T0i/T0e, βe ≡ n0T0e/(B
2
0/2µ0), ρSe ≡ cSe/Ωci, cSe =

√
T0e/mi, Ωci = eB0/mi.

In addition to νe, the adjustable parameters considered here include the mass ratio σ, the
electron beta βe, ρSe/a, and τ , although the latter is held fixed at τ = 1.

We study the collisional–collisionless transition by scanning in collisionality. As νe is
decreased, the different ion and electron kinetic scales become important. Given the challenge
of clearly separating all the relevant spatial scales in a kinetic simulation, we split our study
into two sets of runs: a smaller-ρSe series (ρSe/a = 0.02/

√
2 ≃ 0.014) and a larger-ρSe series

(ρSe/a = 0.2/
√
2 ≃ 0.14). Since τ = 1 is held fixed, these two sets of runs also typically

correspond to ρi/a = 0.02 and ρi/a = 0.2, respectively.
In the former set ρe, de ≪ ρSe ≲ δ ≪ a; in this case the frozen-flux condition is broken

by collisions alone, and since δ well exceeds the collisionless electron scales ρe, de, such
scales need not be resolved in the simulations. The ion response, on the other hand, is
predominantly collisional (δ > ρSe) at the smallest considered values of S ∼ 500 but kinetic
(δ ≲ ρSe) at the largest values, S ∼ 105. Thus resistive MHD would be expected, at least
marginally, to be valid in this case at the smaller S values. In the set of runs with larger-ρSe
(ρSe/a ≃ 0.14), we again consider ρe, de ≪ ρSe ≲ a, but since ρSe/a is ten times larger than in
the previous set of runs, the ions in this second set are predominantly kinetic (δ ≲ ρSe) over
the entire considered range of S ∼ 100 − 106. Indeed, at the highest values of S, δ reaches
collisionless electron scales (de at βe ≪ 1 and ρe at βe ∼ 1), and the instability dynamics
become essentially collisionless.

In both sets of runs, we vary S over the ranges mentioned above for three different
sets of βe and σ = me/mi: [(βe, σ)=(0.3,0.01), (0.075,0.0025), (0.01875,0.000625)]. These
parameters are such that ρSe/de ≡

√
βe/(2σ) =

√
15 ≃ 3.9 is held fixed and thus, since ρSe/a

is also held fixed (at either 0.014 or 0.14), de/a is also held fixed (at either 0.0037 or 0.037,
respectively). Given the parameter dependences of di and ρe noted in (10), however, it is
seen that the values of di/a and ρe/a both change as βe and σ are varied in this manner: for
ρSe = 0.014, di = 0.02/

√
βe and ρe/a = 0.02

√
σ, while for ρSe/a = 0.14 they are ten times

larger.
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Figure 2: Growth rate and current sheet width versus the Lundquist num-
ber for ρSe/a = 0.02/

√
2 (upper figures), and ρSe/a = 0.2/

√
2 (lower figures).

Red crosses, green squares, and blue circles show gyrokinetic results for (βe, σ) =
(0.3, 0.01), (0.075, 0.0025), (0.01875, 0.000625), respectively. Red solid, green dashed and blue
dot-dashed lines are the corresponding two-fluid [7] scalings. The relevant scale lengths are
identified on the right axis of the right panel.

3.2 Simulation results

Figure 2 shows the tearing mode growth rate (γ = d logA∥/dt evaluated at the X-point)
and current layer width (full-width at half-maximum) as functions of the Lundquist number
(symbols) for τ = 1. The upper panels correspond to ρSe/a = 0.014, and the lower panels
correspond to ρSe/a = 0.14. Also plotted (lines) are the results obtained from a reduced two
fluid model [7] with an isothermal electron equation of state. This model is derived under the
assumption of low-βe, but exactly how low βe must be for the validity of this model depends
on how the various quantities in the model are ordered and is thus problem-dependent. For
the ordering assumed in [7], it is argued that βe ≪

√
σ is required — a condition that is

marginally satisfied here only for the lowest βe case, (βe, σ) = (0.01875, 0.000625). The two
fluid model is also derived under the assumption of cold ions, but the difference between the
gyrokinetic results at τ = 0 and τ = 1 is small.
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For the largest value of the collisionality, the gyrokinetic growth rates roll-over because
the current layer width is too wide to satisfy the asymptotic scale separation, δ ≪ a, assumed
in the two-fluid model tearing mode dispersion relation that is plotted in the figure. The
deviation between the gyrokinetic and two-fluid results at the lowest S values should therefore
be disregarded.

It is seen from the upper right panel that, as noted earlier, δ > ρSe for all but the largest
S values. In this case, as expected, the two-fluid model, at least at low-βe, recovers the
well-known single-fluid resistive-MHD scalings [6] and is thus independent of βe. The over-
estimation of the growth rates by the two fluid model at higher βe ∼ 0.3 is possibly due to
either a breakdown in the low-βe ordering of the fluid model or a gradual onset of kinetic
effects (e.g., the invalidity of a simple isothermal equation of state).

For the lower panels, we set ρSe/a = 0.14, and adjust νe such that δ ≲ ρSe, thus focusing
on the regime where ion kinetic effects are important. As in the previous case, we observe
better agreement between the GK and two fluid results for lower values of βe. As S increases,
the growth rate and the current layer width are less dependent on the collisionality. In this
regime, electron kinetic effects (Landau damping and even finite electron orbits: note that
for βe = 0.3, δ/ρe ≈ 2) play an role to break the frozen-flux condition instead of collisions,
thus called the collisionless regime. Since these effects are absent in the two fluid model, the
scalings do not agree for any values of βe in this regime.

4 Summary

Multiscale hierarchy is intrinsic in plasmas, and is observed in many situations of interest.
In collisionless plasmas, various kinetic effects play important roles. Our approach to such
multiscale phenomena is a gyrokinetic simulation. With the help of scale separation of
dynamics under the mean magnetic field, we can reduce the phase space dimension from six
to five using the gyrokinetic ordering, thus an accurate kinetic simulation becomes possible
though it is still computational demanding.

We have briefly discussed the gyrokinetic model and the gyrokinetic simulation code,
AstroGK, intended for studies of astrophysical plasmas and basic properties of plasmas. Then,
we have shown the recent application of the gyrokinetic simulation to magnetic reconnection
as a typical example of multiscale phenonema in plasmas. Starting from a collisional case, we
gradually introduced various kinetic effect into the phenomena and observed transition from
the collisional fluid-like case to the collisionless kinetic case by changing the collisionality
parameter.

We have only shown one attempt of understanding multiscale phenomena in plasmas by
the gyrokinetic simulation. However, there have been many studies of nonlinear gyrokinetic
simulations using AstroGK published recent years. For example, the first kinetic simulations
of turbulence describing the transition from Alfvén to kinetic Alfvén wave turbulence at the
scale of the ion Larmor radius in an attempt to understand solar wind turbulence [8, 9],
nonlinear phase-mixing properties of turbulence [10], the study of the statistical properties
of phase-space structures of plasma turbulence [11], the Alfvén wave dynamics in the LAPD
experiment [12]. We refer the readers to the listed publications for more detailed discussions.
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