流れのあるプラズマの 非線形シミュレーション **– double Beltrami**平衡の形成

物理学会第59回年次大会

沼田龍介,吉田善章,林隆也А

東大新領域,核融合研A

物理学会 27aXH-6 2004/ 3/27 - p.1/12

Introduction

Scale Hierarchy

MHD Alfvén singularity [E. Hameiri (1983), H. Tasso et al. (1998)]

Hall-MHD

Singular perturbation (Hall term) may avoid singularity

Double Beltrami State

Equilibrium in Hall-MHD is given under the Beltrami-Bernoulli conditions,

$$\boldsymbol{B} = a(\boldsymbol{V} - \boldsymbol{\epsilon} \nabla \times \boldsymbol{B}), \quad \boldsymbol{B} + \boldsymbol{\epsilon} \nabla \times \boldsymbol{V} = b\boldsymbol{V}$$
(1)

$$p + \frac{V^2}{2} = \text{const.} \tag{2}$$

where $\epsilon = \delta_i / L$ ($\delta_i \equiv c / \omega_{pi}$: ion collisionless skin depth)

Relaxation Process [Z. Yoshida and S.M. Mahajan (2002)] The relaxed state is achieved by minimizing a generalized enstrophy F (measure of fluctuations) with appropriate adjustment of ideal constants of motion E, H_1 , H_2 .

$$\delta(F - \mu_0 E - \mu_1 H_1 - \mu_2 H_2) = 0 \tag{3}$$

Adjustment condition to obtain *E* the double Beltrami state

$$E - \mu_1' H_1 - \mu_2' H_2 = 0$$

$$F = \frac{1}{2} \int |\nabla \times (\mathbf{A} + \epsilon \mathbf{V})|^2 dx \quad E = \frac{1}{2} \int (B^2 + V^2) dx$$

$$H_1 = \int \mathbf{A} \cdot \mathbf{B} dx \qquad H_2 = \int (\mathbf{A} + \epsilon \mathbf{V}) \cdot (\mathbf{B} + \epsilon \nabla \times \mathbf{V}) dx$$
(4)

Simulation Model

We consider compressible Hall-MHD equations

$$\frac{\partial n}{\partial t} = -\nabla \cdot (n\mathbf{V}) \tag{5}$$

$$\frac{\partial(n\mathbf{V})}{\partial t} = -\nabla \cdot (n\mathbf{V}\mathbf{V}) - \nabla p + (\nabla \times \mathbf{B}) \times \mathbf{B}$$
(6)

$$+\frac{1}{R_{\rm e}} \left[\nabla^2 \boldsymbol{V} + \frac{1}{3} \nabla (\nabla \cdot \boldsymbol{V}) \right] \tag{7}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times \left[\boldsymbol{V} \times \boldsymbol{B} - \frac{\boldsymbol{\epsilon}}{n} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} \right] + \frac{1}{R_{\rm m}} \nabla^2 \boldsymbol{B}$$
(8)

$$\frac{\partial p}{\partial t} = -(\mathbf{V} \cdot \nabla)p - \gamma p \nabla \cdot \mathbf{V}$$
(9)

$$+\frac{1}{R_{\rm e}}|\nabla \times \boldsymbol{V}|^2 + \frac{4}{3R_{\rm e}}|\nabla \cdot \boldsymbol{V}|^2 + \frac{1}{R_{\rm m}}|\nabla \times \boldsymbol{B}|^2$$
(10)

where *n*: number density (ion mass is normalized to be unity), *p*: ion pressure, R_e : Reynolds number, R_m : magnetic Reynolds number, γ : ratio of specific heat. We have assumed the quasi-neutrality $n = n_i = n_e$, and $p_e = 0$.

Simulation Model

All simulations are carried out by NEC SX7 installed in TCSC, NIFS (30GFLOPS,7MByte)

Simulation Domain 3D rectangular domain $[-a, a] \times [-a, a] \times [0, 2\pi R]$ Boundary Condition

Periodic in z direction Rigid perfect conducting wall in x, y direction

$$V = 0$$

$$B_{\rm N} = 0$$

$$\partial_N B_{\rm T} = 0 \quad (\mathbf{n} \times (\nabla \times \mathbf{B}) = 0)$$
(12)

where n is a unit normal vector, ∂_N is a normal derivative, and B_N, B_T is the normal and tangential component of the magnetic field, respectively. To assure tangential components of the electric field vanish, we set $\epsilon = 0$ at the wall. *Numerical Method*

Finite difference (2nd order) + Runge-Kutta-Gill method

Dispersion Relation

In the ideal limit, the dispersion relation for purely transversal small perturbation around a uniform equilibrium ($B_0 = (0, 0, B_0)$, $V_0 = 0$, ρ_0 , p_o are constants) is given by

$$\omega = \pm \frac{V_{\rm A}}{2} \left[\epsilon k^2 \pm \sqrt{\epsilon^2 k^4 + 4k^2} \right]. \tag{13}$$

The shear Alfvén wave splits into the Alfvén whistler (right-hand polarized) wave and the Alfvén ion cyclotron (left-hand polarized) wave.

Initial Condition

2D force free equilibrium ($\nabla \times \mathbf{B} = k_0 \mathbf{B}$) [R.Horiuchi and T.Sato (1985)] Magnetic Field

$$B_x = -\frac{1}{k_0} (k_1 B_1 \cos k_2 x \sin k_1 y + k_2 B_2 \cos k_1 x \sin k_2 y)$$
(14)

$$B_y = \frac{1}{k_0} (k_2 B_1 \sin k_2 x \cos k_1 y + k_1 B_2 \sin k_1 x \cos k_2 y)$$
(15)

$$B_z = B_1 \cos k_2 x \cos k_1 y + B_2 \cos k_1 x \cos k_2 y$$
 (16)

Flow

$$V = V_z e_z = M_A B_z e_z$$
 (17)

Density

$$\rho = 1$$
 (uniform) (18)

Pressure

$$p = p_0$$
 (uniform) (19)

$$\beta = \int p_0 \mathrm{d}x / \int \frac{1}{2} B^2 \mathrm{d}x \qquad (20)$$

Equilibrium State

Aspect Ratio : $2\pi R/2a = 3$ Grid : $129 \times 129 \times 256$ $R_{\rm e} = 10^4, R_{\rm m} = 10^4$ $\beta = 3.0, M_{\rm A} = 0.5 \ \epsilon = 0, 0.1$

left panel : $\epsilon = 0.1$ (Hall-MHD), right panel : $\epsilon = 0$ (MHD)

Kinetic Energy

• $\epsilon = 0.1$ (Hall-MHD): V_{\perp} is more than 10% of |V|• $\epsilon = 0.0$ (MHD): No V_{\perp} remains

Beltrami Conditions

$$\boldsymbol{B} = a(\boldsymbol{V} - \frac{\epsilon}{n} \nabla \times \boldsymbol{B}), \quad \boldsymbol{B} + \epsilon \nabla \times \boldsymbol{V} = b\boldsymbol{V}$$
(21)

Time : $100.0\tau_A$

Variational Principle

Temporal evolution of the macroscopic quantities $F' \equiv \int |\nabla \times \mathbf{V}|^2 dx$, E, H_1 , and $H'_2 \equiv H_2 - H_1$ normalized by the initial value for the case of $\epsilon = 0.1$.

The coercivity condition demands that the order of fragility is $H_1 > E > H_2 - H_1$, which agree with the numerical result.

Summary

- We have developed a nonlinear 3D Hall-MHD simulation code.
- Dispersion relation in the Hall-MHD is reproduced by the simulation code.
- Comparing the two-fluid relaxed state with single-fluid one, an appreciable flow including perpendicular component was created.
- Relaxation process is investigated by means of the variational principle. Energy is not a minimizer.

	with Hall term	without Hall term
ideal constants	Ion Helicity	Cross Helicity
of motion	$H_2' = \int (2\epsilon \boldsymbol{V} \cdot \boldsymbol{B} + \epsilon^2 \boldsymbol{V} \cdot \nabla \times \boldsymbol{V}) \mathrm{d}x$	$H_c = \int oldsymbol{V} \cdot oldsymbol{B} \mathrm{d}x$
	\downarrow	\Downarrow
Relaxed State	Double Beltrami	Single Beltrami + Parallel Flow

