テアリング不安定性のジャイロ運動論シミュレーション

沼田 龍介*

2012年3月24日

^{*}兵庫県立大学大学院シミュレーション学研究科

Magnetic reconnection is multiscale problem

Magnetic
reconnection is
multiscale problem
AstroGK: Astrophysical
Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—collisionless
transition
lon temp. dependence:
kinetic Alfvén wave
Summary

- □ Physics to break flux-freezing is necessary for field lines to change its topology: primarily by collisions (resistivity).
 - \Rightarrow Only collisions set a spatial scale in MHD model.
- □ Resistive spatial scale for weakly collisional plasmas falls below kinetic scales (MHD theory is not valid).
- \square Relevant kinetic scales: $d_{i,e}$ [inertia], $\rho_{i,e}$ [FLR], ρ_{S} [Sound].

AstroGK: Astrophysical Gyrokinetics Code

Magnetic reconnection is multiscale problem
 AstroGK:
 Astrophysical
 Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—collisionless
transition
lon temp. dependence:
kinetic Alfvén wave
Summary

- \square Eulerian continuum, local flux tube, δf , electromagnetic code.
- □ Publicly available at https://sourceforge.net/projects/gyrokinetics/.
- □ Numata *et al.*, J. Comput. Phys. **229**, 9347 (2010).

Weak Scaling @ Kraken [Cray XT5] Strong Scaling @ Kraken [Cray XT5]

Collisions in AstroGK

Magnetic reconnection is multiscale problem
AstroGK: Astrophysical
Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—collisionless
transition
lon temp. dependence:
kinetic Alfvén wave
Summary

Recently, linearized collision operators for gyrokinetic simulations, which satisfies physical requirements are established and implemented in AstroGK [Abel *et al*, 2008; Barnes *et al*, 2009]

The operators are the pitch-angle scattering (Lorentz), the energy diffusion, and moments conserving corrections to those operators for like-particle collisions. Electron-ion collisions consists of pitch angle scattering by background ions and ion drag are also included.

Problem setup

Magnetic reconnection is multiscale problem
AstroGK: Astrophysical Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—collisionless transition
Ion temp. dependence: kinetic Alfvén wave
Summary

Collisionality $\nu_{\rm e}$ is scanned to vary current layer width δ . As $\nu_{\rm e}$ is decreased, the current layer width becomes narrower, and the ion and electron kinetic scales become important.

Case 1 electron scale \ll ion scale $\sim \delta \ll$ equili. scale electron scale $\sim \delta \ll$ ion scale \lesssim equili. scale

Dispersion relation

Magnetic reconnection is multiscale problem
AstroGK: Astrophysical Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—collisionless transition
Ion temp. dependence: kinetic Alfvén wave
Summary

Typical form of dispersion relation of tearing instability.

[Fig. taken from Rogers et al., 2011]

Large
$$\Delta'$$
 $\gamma \tau_{\rm A} \sim S^{-1/3}$ Small Δ' $\gamma \tau_{\rm A} \sim S^{-3/5}$

MHD to two-fluid MHD

Magnetic reconnection is multiscale problem
AstroGK: Astrophysical Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid
MHD
Collisional—collisionless transition
lon temp. dependence: kinetic Alfvén wave
Summary

- \square Growth rate and current layer width scaling against Lundquist number S are obtained from GK simulation. [dots]
- □ Scalings are compared with reduced two-fluid model by Fitzpatrick (Fitzpatrick, 2010). [lines]
- \square GK and 2F results agree well only for low- $\beta_{\rm e}$.
- \Box 2F model assumes $\beta_{\rm e} \ll \sqrt{m_{\rm e}/m_{\rm i}}$, which is marginally satisfied for $\beta_{\rm e}=0.01875$ case.
- ☐ Eqn. of state used in 2F model may not be valid.

Collisional—collisionless transition

Magnetic reconnection is multiscale problem
AstroGK: Astrophysical Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—
collisionless
transition
lon temp. dependence:
kinetic Alfvén wave
Summary

 \square Collisional-collisionless transitional regime is reproduced: For large S, electron inertia mediates reconnection instead of collisions.

Ion temp. dependence: kinetic Alfvén wave

Magnetic reconnection is multiscale problem
AstroGK: Astrophysical Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—collisionless transition
lon temp.
dependence: kinetic

Alfvén wave

Summary

- \square Ion temperature $(au \equiv T_{0\mathrm{i}}/T_{0\mathrm{e}})$ dependence.
- Theoretical prediction, $\gamma \tau_{\rm A} \sim \tau^{1/3}$, because of the transition of Alfvén wave to kinetic Alfvén wave.
- \Box For higher β_e , sound wave couples to Alfvén wave. A compressible effect play a role, and $\tau^{1/3}$ dependence is no longer seen.

Summary

Magnetic reconnection is multiscale problem
AstroGK: Astrophysical Gyrokinetics Code
Collisions in AstroGK
Problem setup
Dispersion relation
MHD to two-fluid MHD
Collisional—collisionless transition
Ion temp. dependence: kinetic Alfvén wave
Summary

- ☐ We have performed linear GK simulations of tearing instability. It is shown that growth rate scaling with collisionality agrees well with prediction by 2F model only for low beta case.
- □ For large beta, coupling of Alfvén wave with ion sound wave becomes significant. General non-polytropic equation of state should be considered for pressure perturbations.
- □ See Numata *et al.*, Phys. Plasmas **18**, 112106 (2011) for more detail.
- Related future works planned: Nonlinear simulations to study kinetic effects on magnetic reconnection, diamagnetic stabilization of tearing instability [@Dartmouth], microtearing turbulence [with Loureiro et al.]
- Gyrokinetics is a suitable approach to multiscale kinetic plasmas. AstroGK is a well-established gyrokinetics code. It is free!