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Onset of Turbulence in a Drift Wave–Zonal Flow System
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Numerical analyses of bifurcation phenomena in the Hasegawa-Wakatani model are presented, that provide
new insights into the interactions between turbulence and zonal flows in the tokamak plasma edge region. The
simulation results show a regime where, after an initial transient, drift wave turbulence is suppressed through
zonal flow generation. As a parameter controlling the strength of the turbulence is tuned, this zonal-flow-
dominated state is rapidly destroyed and a turbulence-dominated state re-emerges. The transition is explained
in terms of the Kelvin-Helmholtz stability of zonal flows. This is the first observation of an upshift of turbulence
onset in the resistive drift wave system, which is analogous to the well-known Dimits shift in turbulence driven
by ion temperature gradients.
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1 Introduction

Fusion plasmas and other turbulent flows in quasi-two-
dimensional (2D) geometry can undergo spontaneous tran-
sitions to a turbulence-suppressed regime. Known as L–H
(low-to-high confinement) transitions in plasmas, they are
studied intensively because confinement enhancement may
supervene through the concomitant abatement of anoma-
lous or turbulent particle and heat fluxes. In tokamak
edge plasmas L–H transitions are associated with nonlin-
early self-generated poloidal E × B shear or zonal flows,
which absorb energy from drift waves and consume the
small scale eddies that mediate turbulent transport. It is
now widely accepted that control of emergent zonal flows
is crucial to achieving and sustaining improved confine-
ment [1].

In this paper we present the results of analytic and nu-
merical investigations of transitions between turbulence-
dominated and zonal-flow-dominated regimes, using the
Hasegawa–Wakatani (HW) model [2, 3] for electrostatic
resistive drift wave turbulence in 2D slab geometry. We
find that bifurcations in the model correspond to the on-
set of drift wave driven turbulence, generation of zonal
flows, and re-emergence of drift wave turbulence as the
zonal flows become unstable. This latter phenomenon is
analogous to the Dimits shift [4] described for turbulence
driven by ion temperature gradients (ITG).

2 Hasegawa–Wakatani model

The physical setting of the HW model may be considered
as the edge region of a tokamak plasma of nonuniform den-
sity n0 = n0(x) and in a constant equilibrium magnetic
field B = B0∇z. Following the drift wave ordering [5],
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the ion vorticity ζ ≡ ∇2ϕ (ϕ is the electrostatic potential,
∇2 = ∂2/∂x2 + ∂2/∂y2 is the 2D Laplacian) and the density
fluctuations n are governed by the equations

∂

∂t
ζ + {ϕ, ζ} = α(ϕ − n) − D∇4ζ, (1)

∂

∂t
n + {ϕ, n} = α(ϕ − n) − κ∂ϕ

∂y
− D∇4n, (2)

where {a, b} ≡ (∂a/∂x)(∂b/∂y) − (∂a/∂y)(∂b/∂x) is the
Poisson bracket, D is the dissipation coefficient. The back-
ground density is assumed to have an unchanging exponen-
tial profile: κ ≡ (∂/∂x) ln n0. Electron parallel motion is
determined by Ohm’s law with electron pressure pe = nTe,

jz = −enve,z = −
1
η

∂

∂z

(
ϕ − Te

e
ln n

)
, (3)

assuming electron temperature Te to be constant (isother-
mal electron fluid). This relation gives the coupling be-
tween ζ and n through the adiabaticity operator α ≡
−Te/(ηn0ωcie2)∂2/∂z2 appearing in Eqs. (1) and (2). In our
2D setting α becomes a constant coefficient when acting
on the drift wave components of ϕ and n by the replace-
ment ∂/∂z → ikz, where 2π/kz = L‖ � Ly is a length
characteristic of the drift waves’ phase variation along the
field lines. However, since zonal components of fluctua-
tions (ky = kz = 0 modes) do not contribute to the parallel
current, this resistive coupling term must be modified with
care [6]. Recalling that turbulence in the tokamak edge re-
gion, where there is strong magnetic shear, is considered
here, ky = 0 should always coincide with kz = 0 because
any potential fluctuation on the flux surface is neutralized
by parallel electron motion. Let us define zonal and non-
zonal components of a variable f as

zonal: 〈 f 〉 = 1
Ly

∫
f dy, non-zonal: f̃ = f − 〈 f 〉,
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where Ly is the periodic length in y, and remove the con-
tribution by the zonal components in the resistive coupling
term in Eqs. (1) and (2). Subtraction of the zonal compo-
nents from the resistive coupling term α(ϕ−n)→ α(ϕ̃− ñ)
yields the modified HW (MHW) equations,

∂

∂t
ζ + {ϕ, ζ} = α(ϕ̃ − ñ) − D∇4ζ, (4)

∂

∂t
n + {ϕ, n} = α(ϕ̃ − ñ) − κ∂ϕ

∂y
− D∇4n. (5)

The variables in Eqs. (4) and (5) have been normalized by

x/ρs → x, ωcit → t, eϕ/Te → ϕ, n1/n0 → n,

where ρs ≡
√

Te/mω−1
ci is the ion sound Larmor radius

(vsi ≡
√

Te/m is the ion sound velocity in the cold ion
limit), n1 is the fluctuating part of the density.

Wakatani and Hasegawa found [3] that excitations of
waves having kz that maximizes the linear growth rate (for
given kx and ky) are most likely to occur, since the plasma
can choose any parallel wavenumber (kz). Using the paral-
lel wave number of the maximum growth rate, α is given
by α = 4k2kyκ/(1 + k2)2. This also gives α = 0 for the
zonal mode.

The MHW model spans two limits with respect to
the adiabaticity parameter α. In the adiabatic limit
α → ∞ (collisionless plasma), the non-zonal compo-
nent of electron density obeys the Boltzmann relation
ñ = n0(x) exp(ϕ̃), and the equations are reduced to the
Hasegawa–Mima equation [5]. In the hydrodynamic limit
α→ 0, the equations are decoupled. The vorticity is deter-
mined by the 2D Navier-Stokes equation, and the density
becomes a passive scalar. The advantage of our choice of
α as a free parameter is the capability for treating the limits
in a unified manner.

In the adiabatic, ideal limit (α → ∞, D → 0) the
MHW system has two dynamical invariants, the energy E
and the potential enstrophy W,

E =
1
2

∫
(n2+ |∇ϕ|2)dx, W =

1
2

∫
(n−ζ)2dx, (6)

where dx = dxdy, which constrain the fluid motion. Con-
servation laws are given by

dE
dt
= Γn − Dα − DE ,

dW
dt
= Γn − DW , (7)

where fluxes and dissipations are given by

Γn = −κ
∫

ñ
∂ϕ̃

∂y
dx,

Dα = α
∫

(ñ − ϕ̃)2dx,

DE = D
∫

((∇2n)2 + |∇ζ |2)dx,

DW = D
∫

(∇2n − ∇2ζ)2dx.

Unlike the Hasegawa–Mima model which is an energy-
conserving system, the MHW model has an energy source
Γn. Due to the parallel resistivity, ñ and ϕ̃ can fluctuate out
of phase which produces non-zero Γn. The system can ab-
sorb free energy contained in the background density pro-
file through the resistive drift wave instability.

3 Simulation Results

The MHW equations are solved in a doubly periodic
square slab domain with box size L = 2π/∆k where the
lowest wavenumber ∆k = 0.15 (L ∼ 42). The equations
are discretized on 256×256 grid points by the finite differ-
ence method. We examine the effects of the parameters κ
and α on the nonlinearly saturated state, and fix D = 10−4

throughout this paper.
We start simulations by imposing small amplitude ran-

dom perturbations. The perturbations grow linearly in the
initial phase and generate drift waves, then the drift waves
undergo secondary instabilities which excite zonal flows
until nonlinear saturation occurs. In the saturated state, we
observe that Γn ' Dα � DE ,DW . The spatial structure
of the saturated electrostatic potential is shown in Fig. 1.
We observe that zonally elongated structures of the electro-
static potential are generated in the MHW model because
the modification removes the unphysical resistive dissipa-
tion of the zonal modes. The zonal flows carry nearly all
the kinetic energy in the final state — they have absorbed
nearly all the energy from the drift waves. The build-up
of the zonal flow and resulting transport suppression high-
light the importance of the modification of the model in the
nonlinear regime [7].
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Fig. 1 Contour plot of ϕ in the saturated state. Zonally elongated
structure of the electrostatic potential is clearly visible in
the MHW model.

Let us show how the parameters affect the saturated
state in the MHW model. In Fig. 2, we plot the ratio of the
kinetic energy of the zonal flow (F ≡ 1/2

∫
(∂〈ϕ〉/∂x)2dx)
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to the total kinetic energy (Ek ≡ 1/2
∫
|∇ϕ|2dx) against

α. It is clearly seen that there are two types of saturated
states: one where zonal flows prevail and the other domi-
nated by isotropic turbulence. Conversion from one state
to the other occurs over a narrow range of the parameter
space. We can see that zonal flows are generated in the
adiabatic regime (α � 1) while isotropic flows are gen-
erated in the hydrodynamic regime (α � 1). Transition to
the turbulent state also occurs if the drift wave instability is
driven strongly by increasing the density gradient parame-
ter κ.
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Fig. 2 Parameter dependence of the zonal kinetic energy nor-
malized by the total kinetic energy. Transitions from
a zonal-flow-dominated state to a turbulence-dominated
state occur.

4 Stability of Zonal Flow

We examine the stability of the zonal flows obtained
from the numerical simulations, and compare the stability
threshold and the transition point in this section. We con-
sider the perturbation around the zonal flow background.
The electrostatic potential and the density are decomposed
as ϕ = ϕ0(x)+ ϕ̂(x) exp i(kyy−ωt), and n = n̂(x) exp i(kyy−
ωt) where dϕ0/dx = V gives the background flow in the y
direction. By linearizing the MHW equations, we obtain
an eigenvalue equation containing the effect of κ and α,[

d2

dx2 − k2
y +

kyV ′′

ω − kyV

]
ϕ̂

− iα
ω − kyV + iα

(
1 −

kyκ

ω − kyV

)
ϕ̂ = 0. (8)

We neglect the viscosity. The generated zonal flows in the
y direction are assumed to have a sinusoidal profile, V =
V0 sin(λx). The amplitude V0 and wavenumber λ = nλπ/L
are determined from the simulation results as V0 ∝ κ2, and
λ ≈ 0.3. We solve the eigenvalue equation by the standard
shooting method in the domain D = {x| − L/2 ≤ x ≤
L/2}. The boundary is assumed to be rigid ϕ̂(±L/2) = 0
for simplicity.

In two limits (α → 0 and α → ∞), some conditions
for stability are known (see [8] and references therein), and

the eigenvalue problem is rather simple because it is not
necessary to consider the continuous spectra on the real
ω axis. If we find the eigenvalue ω and the correspond-
ing eigenfunction ϕ̂, the complex conjugate of ω is also an
eigenvalue and the corresponding eigenfunction is given
by the complex conjugate of ϕ̂. Thus, we can always re-
strict our quest for eigenvalues in the upper half plane of
the complex ω plane, and can neglect interactions between
the point spectra and the continuous spectrum.

For the case of finite α the complex conjugate of an
eigenvalue is not a eigenvalue, therefore we must solve
for negative ωi too. Moreover, there exist two continuous
spectra in this case:

ω = kyV, kyV − iα where |V | ≤ V0. (9)

Both represent convective transport due to the background
flow. One of them is damped by the resistivity. These con-
tinua may interact with the point spectrum. Thus the situ-
ation is much more complicated in the intermediate α case
compared with the adiabatic and hydrodynamic limits.
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Fig. 3 Growth rates for HW case. Solid curves show the grawth
rates for α = 0.0001, and thick lines near the real ω axis
denote two continuous spectra. Two branches from the
α→ 0 case (dotted line) are also shown for reference.

We first show the effect of α and neglect effect of κ.
We consider nλ = 2 for simplicity. Figure 3 shows the
imaginary parts of the eigenvalues for α = 0.0001. Two
branches from the α→ 0 case (dotted line) are also shown
for reference, so that it is seen that ωi is slightly shifted
downwards for finite α. For increasing α, we observe the
positive eigenvalues disappearing at α ≈ 0.000417.

Next, we consider the effect of κ in addition to α.
Since κ always appears in the form of κα and α is small in
the vicinity of the threshold, the effect of κ is rather minor.
κ does not significantly affect the behavior of the eigenval-
ues except that κ controls the amplitude of flow (V0 ∝ κ2).

We summarize the stability of zonal flows by show-
ing the bifurcation diagram in α-κ plane together with the
numerically obtained results. The only excitable mode that
can be resolved in the numerical simulation is the ky = 0.15
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mode, which is the first unstable mode of the primary in-
stability (resistive drift wave instability). In Fig. 4, we
show the stability threshold of ky = 0.15 mode for the pri-
mary instability and the tertiary instability (KH instability).
Each mark in the figure denotes a numerically obtained sat-
urated state: N, �, • represent respectively the zonal-flow-
dominated, transitional, and turbulence-dominated states.
In these states zonal flows contain more than 90%, 20-
90%, and less than 20% of the total kinetic energy, respec-
tively. The qualitative tendency of the thresholds in the
bifurcation diagram shows agreement between the numer-
ical simulations and the KH analysis, i.e. increasing α (κ)
is stabilizing (destabilizing). Zonal-flow-dominated states
are observed in between the primary and the tertiary in-
stability thresholds. The emergence of a turbulent state is
shifted from the primary threshold to the tertiary threshold
due to the turbulence suppression effect of the zonal flow,
which is analogous to the Dimits shift observed in ITG tur-
bulence.

The reasons for the quantitative discrepancy between
the boundary of the zonal and the turbulent states may be
because of the simplification made in the KH analysis; the
simplified flow profile, the boundary condition and viscos-
ity may also affect the results.
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Fig. 4 Bifurcation diagram showing the correlation between the
linearized stability estimates described in the text and the
regimes observed in our turbulence simulations.

5 Conclusion

In summary, we have analyzed bifurcation phenomena in
two-dimensional resistive drift wave turbulence. First, we
have performed numerical simulations of the modified HW
model to study bifurcation structures in a two-parameter
(α-κ) space. We have shown that, in the MHW model,
zonal flows are self-organized and suppress turbulence and
turbulent transport over a range of parameters beyond the
linear stability threshold for resistive drift waves. By per-
forming a systematic parameter survey, we have found
that such zonal-flow-dominated states suddenly disappear

as a threshold is crossed, being replaced by a turbulence-
dominated state.

The threshold of the onset of turbulence has been com-
pared with the linear stability threshold of an assumed lam-
inar zonal flow profile. Numerical analysis of the eigen-
value problem determining the stability of the assumed
zonal flow profile in the HW model confirms the following
trend: κ determines the amplitude of the zonal flows, thus,
large κ destabilizes the zonal flows. On the other hand, the
adiabatic response of parallel electrons given by α stabi-
lizes them. The constructed bifurcation diagram in the α-κ
plane for the HW model confirms the scenario of the onset
of turbulence in the drift wave/zonal flow system being due
to the disruption of zonal flows by KH instability.
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