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Introduction

Flows in Plasmas
Laboratory Plasmas, Fusion Plasmas
(Non-neutral Plasmas, Tokamak H-mode boundary layer, Shear-flow Stabilization)

Space Plasmas
(Magnetic reconnection, Solar corona, High beta equilibrium of the Jupiter)

Single-Fluid Model

Singularity in equilibrium equation
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(1)

E. Hameiri, Phys. Fluids, 26(1), 230 (1983)
H. Tasso, et. al., Phys. Plasmas 5, 2378 (1998)

Scale invariance
Current sheet model to heating the solar corona

E.N. Parker, Astrophys. J. 471, 489 (1996)
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Two-Fluid MHD
The Hall term leads a nonlinear singular perturbation, which

puts anchor on unlimited scale conversions induced by nolinearity.

avoids singularity.

� cf. viscosity in neutral fluids

Double Beltrami Equilibrium
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(

��� �� ��� � � : ion collisionless skin depth)
Beltrami Bernoulli Condition
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(4)
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Double Betrami Equilibrium

The general solution is described by a linear combination of eigenfunctions of the curl
operator

��� (

� � ��� � �� ��� ) :
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	 � 
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 ��� � � � �
	 � 
 �  � � 
 �� � � (5)

The generalized Bernoulli condition translates as

��

� �
� � � �� ��� (6)

Application
H-mode boundary layer
S.M. Mahajan and Z. Yoshida, Phy. Plasmas 7, 635 (2000).

Eruptive events in solar coronas
S. Ohsaki, et. al., Astrophys. J. 559, L61 (2001).

Chaos-induced dissipation in collisionless magnetic reconnection
R. Numata and Z. Yoshida, Phys. Rev. Lett. 88, 045003 (2003).
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Relaxation Process

Global Invariants
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Variational Principle
Z.Yoshida and S.M.Mahajan, Phys. Rev. Lett., 88, 095001 (2002)
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��� �
� � � are Lagrange multipliers. The relaxation process is realized by minimizing
perturbation



with appropriate adjustment of

�� �
� � � .
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Simulation Model
We consider compressible Hall-MHD equations
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where � : number density (ion mass is normalized to be unity), �: ion pressure,

� � :
Reynolds number,

� � : magnetic Reynolds number, �: ratio of specific heat. We have
assumed the quasi-neutrality � � � � � � � , and ��
 � �

.
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Simulation Model

Simulation Domain
3 dimensional rectangular domain

� � 	� 	 � � � � 	� 	 � � � �� � � � �

Boundary Condition
Periodic in � direction
Rigid perfect conducting wall in �� � direction

� � �

(19)��� � �
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(20)

where 	 is a unit normal vector,

� � is a normal derivative, and

� � � � � is the normal
and tangential component of the magnetic field, respectively.
To assure tangential components of the electric field vanish, we set  � �

at the wall.

Numerical Method
2nd order central difference in space, the Runge-Kutta-Gill method for time integration
2nd order smoothing to suppress short wave length mode
add a diffusion in the equation of continuity to keep density positive
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Dispersion Relation

In an ideal limit, the dispersion relation for purely transversal small perturbation around a
uniform equilibrium (

� � � � �� �� � � 
� � � � �� ��� ��� are constants) is given by

� �
���

�

� �  � � � �  � � � � 	 � � �
� (21)

which describes the Alfvén whistler wave. We have solved numerically this dispersion
relation in a periodic domain in order to confirm a validity of the code.
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Initial Condition
2D force free equilibrium (

� � � � �� �

)
R.Horiuchi and T.Sato, Phys. Rev. Lett., 55, 211 (1985)

Magnetic Field
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Flow
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Density
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(uniform) (26)

Pressure

� � �� (uniform) (27)

� � �� d � � �
�

� �

d � (28)

t/tA=

Bz isosurface
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Equilibrium State

Aspect Ratio :

� � � �� 	 � �

Grid :

� � � � � � � � � ��

� � � � � �� � � � � � �

� � � � �

,

� � � �� �  � �� �� �

left panel :  � �� �
(Hall-MHD), right panel :  � �

(MHD)
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Kinetic Energy
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(Hall-MHD):

��� is more than 10% of

� ��

 � �� �

(MHD): No

��� remains
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Beltrami Conditions
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Time :
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(a) distribution of a (b) distribution of b
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Variational Principle

Temporal evolution of the conservative quantities and the generalized enstrophy
normalized by the initial value for the case of  � �� �

H2’
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The coercivity condition demands that the order of fragility is

�
 � � � � � � �
 , which
agree with the numerical result.
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Summary

We have developed a nonlinear 3D Hall-MHD
simulation code.

The dispersion relation of the Alfvén whistler wave is
reproduced.

Comparing the two-fluid relaxed state with single-fluid
one, an appreciable flow including perpendicular
component was created.

Relaxation process is investigated by means of the
variational principle. Energy is not a minimizer.
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