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Introduction

Flows In Plasmas

B Laboratory Plasmas, Fusion Plasmas
(Non-neutral Plasmas, Tokamak H-mode boundary layer, Shear-flow Stabilization)

B Space Plasmas
(Magnetic reconnection, Solar corona, High beta equilibrium of the Jupiter)

Single-Fluid Model

B Singularity in equilibrium equation

L= [ |30 - M)V - F@)| do = -alw - s(w)] = F'(w) @

E. Hameiri, Phys. Fluids, 26(1), 230 (1983)
H. Tasso, et. al., Phys. Plasmas 5, 2378 (1998)

B Scale invariance
Current sheet model to heating the solar corona

E.N. Parker, Astrophys. J. 471, 489 (1996)
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Two-Fluid MHD

The Hall term leads a nonlinear singular perturbation, which
B puts anchor on unlimited scale conversions induced by nolinearity.
B avoids singularity.

= cf. viscosity in neutral fluids

Double Beltrami Equilibrium

0 .

ij—VX(Uj Xw;)=0 (j=1,2) 2)
w1 = B, wo = B+eVXV )
U, = V-eVvxB, Us =V

e = 6;/L (8; = ¢/wp;: ion collisionless skin depth)
Beltrami Bernoulli Condition

UjXw; =0=Vyp; (j=1,2) (4)
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Double Betrami Equilibrium

The general solution is described by a linear combination of eigenfunctions of the curl
operator G4+ (VX G4+ = A\t G4):

B=CiGi+C_G_, V=@ '+ )C Gi+(a +eX-)C_G_ (5

The generalized Bernoulli condition translates as

VZ
P+ 7 = const. (6)

Application

B H-mode boundary layer
S.M. Mahajan and Z. Yoshida, Phy. Plasmas 7, 635 (2000).

B Eruptive events in solar coronas
S. Ohsaki, et. al., Astrophys. J. 559, L61 (2001).

B Chaos-induced dissipation in collisionless magnetic reconnection
R. Numata and Z. Yoshida, Phys. Rev. Lett. 88, 045003 (2003).
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Relaxation Process

Global Invariants

1 .
Energy = 5 /(BZ + Vg)da: (7)
. 1
Electron Helicity Hi = > /A - Bdx (8)
1
Ion Helicity Hy = 5 /(A +eV)- (B+ eV X V)dr (9)

Variational Principle
Z.Yoshida and S.M.Mahajan, Phys. Rev. Lett., 88, 095001 (2002)

S(F — poF — p1H1 — p2H) =0 (10)
1 2

F:§/|VX<A—|—€V>| dx (11)

5(E—,(L/1H1 —,(L/QHQ) =0 (12)

1o, i1, o are Lagrange multipliers. The relaxation process is realized by minimizing
perturbation F' with appropriate adjustment of £/, Hy{, Ho.
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Simulation Model

We consider compressible Hall-MHD equations

on

— = -V-(nV =
ot (V) o
3“;:” — _V.(nVV)—Vp+(VxB)xB (14)
L (VEV + 2Y(V V) (15)
Re 3
1 _.

ole Vx [VxB-<(VxB)xB|+——VB (16)

ot n m
% = —(V-V)p—~vpV -V (17)

1

1 ‘ 4
— |V x V|? V- -V)?
+Re| |+3R< )"+

€ m

|V x BJ? (18)

where n: number density (ion mass is normalized to be unity), p: ion pressure, R.:
Reynolds number, R,,: magnetic Reynolds number, ~: ratio of specific heat. We have
assumed the quasi-neutrality n = n; = ne., and p. = 0.
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Simulation Model

Simulation Domain
3 dimensional rectangular domain [—a, a] X [—a, a] x [0, 27 R]

Boundary Condition

Periodic in z direction
Rigid perfect conducting wall in =, y direction

v=20 (19)
By =0
ONBT =0 (n X (V X B) = O) (20)

where n Is a unit normal vector, 95 Is a normal derivative, and By, B is the normal
and tangential component of the magnetic field, respectively.
To assure tangential components of the electric field vanish, we set ¢ = 0 at the wall.

Numerical Method

2nd order central difference in space, the Runge-Kutta-Gill method for time integration
2nd order smoothing to suppress short wave length mode

add a diffusion in the equation of continuity to keep density positive
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Dispersion Relation

In an ideal limit, the dispersion relation for purely transversal small perturbation around a
uniform equilibrium (Bg = (0,0, Bg), Vo = 0, po, po are constants) is given by

w = % [:I:elc2 4 /e2k4 + 4k2-| , (21)

which describes the Alfvén whistler wave. We have solved numerically this dispersion
relation in a periodic domain in order to confirm a validity of the code.
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Initial Condition

2D force free equilibrium (V x B = ko B)
R.Horiuchi and T.Sato, Phys. Rev. Lett., 55, 211 (1985)

Magnetic Field

1
B, = - — (k1B1 cos kox sin k1y + ko B2 cos kyx sin kay) (22)
0
1
By = - — (k2 B1 sin kax cos k1y + k1 B2 sin k1x cos kay) (23)
0
B, = Bicosksxcoskiy+ Bocoskixcosksy (24)
Flow
Density
p = 1 (uniform) (26)
Pressure
= po (uniform) (27)

B = /pod:z:// B2?dx (28)

Bz isosurface
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Equilibrium State

Aspect Ratio : 27 R/2a = 3
Grid : 129 x 129 x 256
=[0I = ([

B =3.0,Mp=05€¢=0,0.1

120.001328 120.001228

H 7 i e |00 ~

-0.60 -0.20 0.20 0.60 -0.60 -0.20 0.20

left panel : € = 0.1 (Hall-MHD), right panel : € = 0 (MHD)
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Kinetic Energy
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e = 0.1 (Hall-MHD): V| is more than 10% of
e = 0.0 (MHD): No V| remains
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Beltrami Conditions |

B=a(V--VxB), B+eVxV =bV (29)

n

Time : 100.07x
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(a) distribution of a (b) distribution of b

[
% University of Tokyo ITC13 2003/12/12 — p.12/14




Variational Principle

Temporal evolution of the conservative quantities and the generalized enstrophy
normalized by the initial value for the case of ¢ = 0.1
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The coercivity condition demands that the order of fragility is H, > E > Ho — H1, which
agree with the numerical result.
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Summary |

= We have developed a nonlinear 3D Hall-MHD
simulation code.

m The dispersion relation of the Alfven whistler wave is
reproduced.

m Comparing the two-fluid relaxed state with single-fluid
one, an appreciable flow including perpendicular
component was created.

m Relaxation process is investigated by means of the
variational principle. Energy is not a minimizer.
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