Equilibrium of kinetic equation

Ryusuke Numata
The University of Maryland
January 21, 2009

1 Vlasov-Maxwell equations

The Vlasov and Maxwell equations are given by,

$$\frac{\partial f_s}{\partial t} + v \cdot \frac{\partial f_s}{\partial x} + \frac{q_s}{m_s} (E + v \times B) \cdot \frac{\partial f_s}{\partial v} = 0,$$

$$\nabla \times E = -\frac{\partial B}{\partial t},$$

$$\nabla \times B = \mu_0 \sum_s q_s \int f_s v \, dv + \frac{1}{c^2} \frac{\partial E}{\partial t},$$

$$\nabla \cdot E = \frac{1}{\epsilon_0} \sum_s q_s \int f_s \, dv,$$

$$\nabla \cdot B = 0.$$

f_s is the distribution function in a six dimensional phase space spanned by (x, v). q_s, m_s are the electric charge, the mass. The subscript s denotes the species. E, B are the electric and the magnetic fields, $\mu_0, \epsilon_0, c = 1/\sqrt{\mu_0 \epsilon_0}$ are the vacuum permeability, the vacuum permittivity, and the speed of light, respectively.

We rewrite the electromagnetic field in terms of the potentials ϕ, A,

$$E = - \nabla \phi - \frac{\partial A}{\partial t},$$

$$B = \nabla \times A,$$

which automatically satisfy the Faraday’s induction equation (2) and the divergence free condition of B (5). We ignore the displacement current (the second term in the right-hand side) in the Ampère’s law (3). By imposing the Coulomb gauge condition, $\nabla \cdot A = 0$, the potentials are governed by

$$-\nabla^2 A = \mu_0 \sum_s q_s n_s U_s = \mu_0 j,$$

$$-\nabla^2 \phi = \frac{1}{\epsilon_0} \sum_s q_s n_s.$$
We have defined the first and the second moments of f as follows,

\[n_s = \int f_s dv, \]
\[u_s = \frac{1}{n_{0s}} \int f_s uv dv, \]

where we call n_s the number density, and u_s the bulk flow. The current density is given by

\[j = \sum_s q_s n_s u_s. \]

2 Harris sheet

We seek a thermal equilibrium solution to the Vlasov-Maxwell system depending only on x. The equations which the equilibrium solution should satisfy are

\[\mathbf{v} \cdot \frac{\partial f_s}{\partial x} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f_s}{\partial \mathbf{v}} = 0, \]
\[\nabla^2 \mathbf{A} = \mu_0 \sum_s q_s \int f_s u dv \]
\[\nabla^2 \phi = \frac{1}{\epsilon_0} \sum_s q_s \int f_s dv. \]

The electromagnetic fields are given by

\[\mathbf{E} = -\nabla \phi = \left(\begin{array}{c} -\frac{d\phi}{dx} \\ 0 \\ 0 \end{array} \right), \quad \mathbf{B} = \nabla \times \mathbf{A} = \left(\begin{array}{c} 0 \\ -\frac{dA_z}{dx} \\ 0 \end{array} \right). \]

Particle dynamics is described solely by the Hamiltonian

\[H = \frac{(P - qA(x))^2}{2m} + q\phi(x). \]

Since we are considering the one dimensional steady state, the Hamiltonian does not depend on t, y, and z, then, there exists three constants of motion,

\[P_y = mv_y \]
\[P_z = mv_z + qA_z \]
\[H = \frac{P_x^2 + P_y^2 + (P_z - qA_z)^2}{2m} + q\phi = \frac{m}{2}(v_x^2 + v_y^2 + v_z^2) + q\phi. \]

Due to those constants of motion, the particle dynamics is integrable, and, the distribution function of the form,

\[f = f(P_y, P_z, H), \]
gives the complete solution to the Vlasov equation \(^1\).

We next find the thermal equilibrium solution by minimizing the (Shannon’s information) entropy,

\[S = \int f \ln f \, dv, \]

while keeping the total energy, the total momenta, and the number density,

\[E = \int H f \, dv, \]
\[M_y = \int P_y f \, dv, \]
\[M_z = \int P_z f \, dv, \]
\[n = \int f \, dv, \]

constants. The variation

\[\delta(S + \lambda_1 E + \lambda_2 M_y + \lambda_3 M_z + \lambda_4 n) = 0 \]

leads to the Euler-Lagrange (E-L) equation,

\[(1 + \lambda_4) + \lambda_1 H + \lambda_2 P_y + \lambda_3 P_z + \ln f = 0 \]

where \(\lambda_{1,2,3,4}\) are the Lagrange multiplier. The solution to the E-L equation is given by

\[f(P_y, P_z, H) = A_1 \exp \left[-\frac{\lambda_1 H}{T} - \frac{\lambda_2 P_y}{T} - \frac{\lambda_3 P_z}{T} \right]. \]

It is more physically intuitive to write

\[\lambda_1 = \frac{1}{T}, \quad \lambda_2 = -\frac{u_y}{T}, \quad \lambda_3 = -\frac{u_z}{T}, \]

where \(T\) is the temperature.

Then, the distribution function is written as

\[f = A_2 \exp \left[-\frac{(v - u_v)}{v_{th}} + \frac{q(u \cdot A - \phi)}{T} \right], \]

\(^1\)We show the distribution function satisfies the Vlasov equation. Obviously, the time derivative vanishes,

\[\frac{\partial f}{\partial t} = \frac{dP_y}{dt} \frac{\partial f}{\partial P_y} + \frac{dP_z}{dt} \frac{\partial f}{\partial P_z} + \frac{dH}{dt} \frac{\partial f}{\partial H} = 0. \]

The Vlasov equation is rewritten as

\[v_x \frac{\partial f}{\partial x} + \frac{q}{m} \left(\frac{\partial \phi}{\partial x} + v_y \frac{dA_y}{dx} + v_z \frac{dA_z}{dx} \right) \frac{\partial f}{\partial P_z} - v_y \frac{dA_y}{dx} \frac{\partial f}{\partial P_z} = 0. \]

We then rewrite the derivative of \(f\) in terms of the constants of motion.

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial P_x} \frac{\partial P_x}{\partial x} + \frac{\partial f}{\partial H} \frac{\partial H}{\partial x} = q \frac{\partial A_x}{dx} \frac{\partial f}{\partial P_x} + q \frac{\partial \phi}{dx} \frac{\partial f}{\partial H}, \]
\[\frac{\partial f}{\partial v_x} = \frac{\partial f}{\partial H} \frac{\partial H}{\partial v_x} = mv_x \frac{\partial f}{\partial H}, \]
\[\frac{\partial f}{\partial v_y} = \frac{\partial f}{\partial P_y} \frac{\partial P_y}{\partial v_y} + \frac{\partial f}{\partial H} \frac{\partial H}{\partial v_y} = m \frac{\partial f}{\partial P_y} + mv_y \frac{\partial f}{\partial H}. \]

Plugging all into the Vlasov equation, we obtain

\[v_x \left(q \frac{dA_x}{dx} \frac{\partial f}{\partial P_x} + q \frac{\partial \phi}{dx} \frac{\partial f}{\partial H} \right) + \frac{q}{m} \left(\frac{\partial \phi}{dx} + v_x \frac{dA_x}{dx} \right) mv_x \frac{\partial f}{\partial H} - \frac{q}{m} \left[v_x \frac{dA_x}{dx} \left(m \frac{\partial f}{\partial P_x} + mv_x \frac{\partial f}{\partial H} \right) \right] = 0. \]
where $A_2 = A_1 \exp(u^2/v_{th}^2)$ (note that u is a constant), $v_{th} = \sqrt{2T/m}$. By normalizing f, we get

$$f = \frac{n}{\pi^{3/2} v_{th}} \exp \left[- \left(\frac{v - u}{v_{th}} \right)^2 \right] \exp \left[\frac{q(u \cdot A - \phi)}{T} \right]. \quad (37)$$

We now consider the two species plasma consists of electrons ($q_e = -e$) and hydrogen ions ($q_i = e$), and find the consistent field, having the form $\phi = 0$, $A = A_z(x)$. The equations to be satisfied are the quasi-neutrality (came from the Poisson’s equation (15)), and the Ampère’s law in the z direction,

$$\int f_i dv - \int f_e dv = 0, \quad (38)$$
$$- \frac{d^2 A_z}{dx^2} = \mu_0 \left(q_i \int f_i v_z dv + q_e \int f_e v_z dv \right). \quad (39)$$

To have a finite A_z and $A_y = 0$, we take $u = u_z z$. The quasi neutrality condition demands

$$n_0 e \exp \left[\frac{q_e u_z A_z}{T} \right] - n_0 i \exp \left[\frac{q_i u_z A_z}{T_i} \right] = 0. \quad (40)$$

If we assume $q_i u_z/T_i = q_e u_{ez}/T_e$, the condition is reduced to $n_0 i = n_0 e = n_0$. The first order moment in the z direction reads

$$M^{(1)}_z = n_0 u_z \exp \left[\frac{q u_z A_z}{T} \right]. \quad (41)$$

Then, the Ampère’s law yields

$$- \frac{d^2 A_z}{dx^2} = \mu_0 e n_0 (u_{iz} - u_{ez}) \exp \left[\frac{q u_z A_z}{T} \right] = G \exp(\kappa A_z), \quad (42)$$

where

$$G = \mu_0 e n_0 (u_{iz} - u_{ez}), \quad \kappa = q u_z / T. \quad (43)$$

The general solution is

$$A_z(x) = C_1 \ln \cosh(x/a) + A_{z,h}. \quad (44)$$

$A_{z,h}$ is the homogeneous part, $d^2 A_{z,h}/dx^2 = 0$, which we don’t care about (we set $A_{z,h} = 0$). The derivative of A_z gives

$$\frac{dA_z}{dx} = \frac{C_1}{a} \tanh(x/a), \quad (45)$$
$$\frac{d^2 A_z}{dx^2} = \frac{C_1}{a^2} \frac{1}{\cosh^2(x/a)}. \quad (46)$$

Noting that $\exp(\kappa A_z) = \cosh^{\kappa C_1}(x/a)$, to satisfy the Ampère’s law, we demand $C_1 = -2/\kappa = -2T/(qu_z)$. Another relations to be satisfied is

$$- \frac{C_1}{a^2} = G = \mu_0 e n_0 (u_{iz} - u_{ez}) = - \mu_0 e n_0 \left(1 + \frac{T_i}{T_e} \right) u_{ez}. \quad (47)$$
which gives the current sheet width a,
\[
\frac{1}{a} = \frac{1}{d_a} \left(\frac{u_{iz}}{v_{thi}} \right) \left(1 + \frac{T_i}{T_c} \right)^{1/2} = \frac{1}{d_e} \left(\frac{u_{ez}}{v_{the}} \right) \left(1 + \frac{T_i}{T_c} \right)^{1/2}.
\] (48)

d_a is the inertial skin depth. Note that $d_a v_{th} = \lambda_D c$ where λ_D is the Debye length. Finally, the vector potential is given by
\[
A_z(x) = -\frac{2T}{qu_z} \ln \cosh(x/a).
\] (49)

$T/(qu_z)$ does not depend on the species. The magnetic field and the density now become
\[
B_y(x) = \frac{\sqrt{2\mu_0 n_0(T_i + T_e) \tanh(x/a)}}{n_0} = B_0 \tanh(x/a),
\] (50)
\[
n(x) = n_0 \cosh^{-2}(x/a),
\] (51)
where $B_0^2/2\mu_0 = n_0(T_i + T_e)$, or $\beta = 2\mu_0 n_0(T_i + T_e)/B_0^2 = 1$. The relation $C_1/a = B_0$ gives the diamagnetic drift velocity, $u_{sz} = -2T/(qu_0 a)$.

We check this solution to the kinetic equation also satisfies the steady fluid equation. We write the steady two fluid equations,
\[
\nabla \cdot (n_s u_s) = 0
\] (52)
\[
n_s m_s (u_s \cdot \nabla) u_s = -\nabla p_s + n_s q_s (E + u_s \times B).
\] (53)

Since $u_s = u_z z$, the continuity equation is trivially satisfied. Thus, the equation to be satisfied is
\[
\frac{dp_s}{dx} + n_s q_s u_{sz} B_y = 0.
\] (54)

By substituting n and B_y and by using the relation $p_s = n_s T_s$, we get
\[
\frac{dT_s}{dx} = 0.
\] (55)

If T of both species are uniform, the solution satisfies the steady two fluid equation.

Guide field

We impose the external guid field in the z direction, $B_{ex} = B_G z$, and $A_{ex} = B_G x y$. This alters the particle Hamiltonian,
\[
H_G = \frac{P_z^2}{2m} + (P_y - qB_G x)^2 + (P_z - qA_z^2) + q\phi.
\] (56)

The distribution function satisfying the Vlasov equation changes slightly to include $u_y A_y$ term,
\[
f_G = \frac{n}{\pi^{3/2} v_{th}^3} \exp \left[-\left(\frac{v - u}{v_{th}} \right)^2 \right] \exp \left[q(u_y A_y + u_z A_z) \right].
\] (57)

The additional field equation should be considered is the Ampère’s law in the y direction. However, since $d^2 A_y/dx^2 = 0$, we can still take $u_y = 0$. Thus, we add an arbitrary constant guide field without changing the solution without a guide field.
Summary

The solution derived here is called the Harris sheet [Harris1962]. The solution is expressed as

\[f_s(x, v_x, v_y, v_z) = \frac{n_0}{\pi^{3/2} v_{th}} \cosh^{-2} \left(\frac{x}{a} \right) \exp \left[-\frac{v_x^2 + v_y^2 + (v_z - u_{sz})^2}{v_{th}^2} \right] . \]

(58)

\(n_0 \) is the number density which is common for species to satisfy the neutrality. \(v_{th} = \sqrt{2T_s/m_s} \) is the thermal speed, \(T_s \) and \(m_s \) is the temperature and the mass, \(u_{sz} \) is the bulk flow in the \(z \) direction satisfying

\[q_i u_{iz} = \frac{q_e u_{ez}}{T_i} . \]

(59)

\(T_s \) and \(u_{sz} \) are constants. The current sheet width is

\[\frac{1}{a} = \frac{1}{\delta_i} \left(\frac{u_{iz}}{v_{thi}} \right) \left(1 + \frac{T_e}{T_i} \right)^{1/2} . \]

(60)

The magnetic field and the number density is given by

\[B_y(x) = B_0 \tanh \left(\frac{x}{\alpha} \right) , \]

(61)

\[n_s(x) = n_0 \cosh^{-2} \left(\frac{x}{\alpha} \right) . \]

(62)

The plasma beta \(\beta = 2\mu_0 n_0 (T_i + T_e)/B_0^2 = 1 \).

3 Gyrokinetic equilibrium

The gyrokinetic equation and the gyrokinetic field equations are written as

\[\frac{\partial h_s}{\partial t} + V_s \frac{\partial h_s}{\partial Z} + \frac{1}{B_0} \left\{ \langle \chi \rangle R, h_s \right\} - \langle C(h_s) \rangle R = q_s \frac{f_{0s}}{T_{0s}} \frac{\partial \langle \chi \rangle R}{\partial t} , \]

(63)

\[\sum_s \left[-\frac{q_s^2 n_0 \phi}{T_{0s}} + q_s \int \langle h_s \rangle v R d\mathbf{v} \right] = 0 , \]

(64)

\[\nabla_\perp^2 A_\parallel = -\frac{1}{\mu_0} \sum_s q_s \int \langle h_s \rangle v R d\mathbf{v} , \]

(65)

\[B_0 \nabla_\parallel \delta B_\parallel = -\frac{1}{\mu_0} \nabla_\perp \cdot \sum_s \int \langle m v_\perp v_\parallel h_s \rangle R d\mathbf{v} . \]

(66)

Consider the consistent collisionless equilibrium in one dimension having only \(A_\parallel (\phi = \delta B_\parallel = 0) \). The equations to be satisfied are

\[\left\{ \langle \chi \rangle R, h_s \right\} = 0 , \]

(67)

\[\int \langle h_s \rangle v R d\mathbf{v} = 0 , \]

(68)

\[\nabla_\perp^2 A_\parallel = -\frac{1}{\mu_0} \sum_s q_s \int \langle h_s \rangle v R d\mathbf{v} , \]

(69)

\[\int \langle m v_\perp v_\parallel h_s \rangle R d\mathbf{v} = 0 . \]

(70)
It is trivial that any one dimensional solution satisfies the steady gyrokinetic equation. The distribution function
should only produce the first order moment in the parallel direction to balance \(A_k \). Then, the general solution
of \(h_s \) is given by a fluctuating part of the shifted Maxwellian,

\[
\begin{align*}
 h_s(R, V_\perp, V_\parallel) &= \frac{2f_{0s}}{v_{th,s}^2} u_{||,s} (X) V_\parallel, \\
 f_{0s}(v) &= \frac{n_{0s}}{\pi^{3/2} v_{th,s}^2} \exp \left[-\frac{v^2}{v_{th,s}^2} \right],
\end{align*}
\]

(71)

where \(u_{||} \) is chosen such that the current produces the desired magnetic field. As we saw in the discussion of the
Harris sheet, the pressure balance must involve only in the \(x \) (perpendicular) direction. (There is no gradient in
the parallel direction.) In the gyrokinetic version of equilibrium, the pressure balance is satisfied by balancing
the magnetic pressure of \(B_0 \) (the guide field) and the static pressure given by \(f_0 \) (whatever the profiles of them
are), and the fluctuating part of static pressure is zero.

A Hamiltonian Dynamics

We start with the Lagrangean defined by

\[
L(x, v, t) = \frac{1}{2}mv^2 - q\phi(x) + qv \cdot A(x),
\]

(72)

where \(v = dx/dt \). Consider the dynamics which minimizes the action,

\[
S = \int_{t_1}^{t_2} L(x, v, t) dt.
\]

(73)

Taking the variation of \(S \) gives

\[
\delta S = \int \left(\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial v} \delta v \right) dt
\]

\[
= \int \left(\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial v} \frac{dx}{dt} \delta x \right) dt
\]

\[
= \left[\frac{\partial L}{\partial v} \delta x \right] + \int \left(\frac{\partial L}{\partial x} \delta x - \frac{dx}{dt} \left(\frac{\partial L}{\partial v} \right) \delta x \right) dt
\]

\[
= - \int \frac{dx}{dt} \frac{\partial L}{\partial v} \delta x dt.
\]

(74)

Thus, for any given \(\delta x \), the minimization of \(S \) yields the Euler-Lagrange equation,

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial v} \right) - \frac{\partial L}{\partial x} = 0.
\]

(75)

By Substituting the Lagrangean, we get

\[
\frac{\partial L}{\partial x} = -q \frac{\partial \phi}{\partial x} + q \frac{\partial}{\partial x} (v \cdot A),
\]

(76)

\[
\frac{\partial L}{\partial v} = mv + qA.
\]

(77)
and
\[m \frac{d\mathbf{v}}{dt} + q \frac{\partial A}{\partial t} + q \left(\mathbf{v} \cdot \frac{\partial}{\partial \mathbf{x}} \right) A + q \frac{\partial \phi}{\partial \mathbf{x}} - q \left(\mathbf{v} \cdot \frac{\partial A}{\partial \mathbf{x}} + \mathbf{v} \times \frac{\partial}{\partial \mathbf{x}} \times A \right) = 0. \] (78)

Writing \(\nabla = \partial/\partial \mathbf{x} \), and defining
\[E = -\nabla \phi - \frac{\partial A}{\partial t} \] (79)
\[B = \nabla \times A, \] (80)
we obtain
\[m \frac{d\mathbf{v}}{dt} = q(E + \mathbf{v} \times B). \] (81)

We Legendre transform the Lagrangean to \(Q, P \) coordinates,
\[H(Q, P, t) = P \cdot \frac{dQ}{dt} - L(x, \mathbf{v}, t) = \frac{(P - qA)^2}{2m} + q\phi \] (82)
where we call \(H \) the Hamiltonian and
\[Q = x, \] (83)
\[P = \frac{\partial L}{\partial \mathbf{v}} = mv + qA. \] (84)

The variation of \(H \) is
\[\delta H = \frac{\partial H}{\partial Q} \delta Q + \frac{\partial H}{\partial P} \delta P \]
\[= \delta P \cdot \frac{dQ}{dt} + P \cdot \frac{d\delta Q}{dt} - \delta L \]
\[= \delta P \cdot \frac{dQ}{dt} + P \cdot \frac{d\delta Q}{dt} - \left(\frac{\partial L}{\partial \mathbf{x}} \delta x + \frac{\partial L}{\partial \mathbf{v}} \delta \mathbf{v} \right) \]
\[= \delta P \cdot \frac{dQ}{dt} + P \cdot \frac{d\delta Q}{dt} \left(\frac{\partial L}{\partial \mathbf{x}} \delta x + P \cdot \frac{dx}{dt} \right) \]
\[= \delta P \cdot \frac{dQ}{dt} - \frac{dL}{dt} \frac{\partial L}{\partial \mathbf{v}} \delta \mathbf{v} \]
\[= \delta P \cdot \frac{dQ}{dt} - \frac{\partial L}{\partial \mathbf{v}} \delta \mathbf{v}. \] (85)

The minimization of \(H \) gives the Hamilton’s equation,
\[\frac{dQ}{dt} = \frac{\partial H}{\partial P}, \] (86)
\[\frac{dP}{dt} = -\frac{\partial H}{\partial Q}. \] (87)

If \(H \) does not include \(t \) explicitly (autonomous), then the conservation of \(H \) immediately follows,
\[\frac{dH}{dt} = \frac{\partial H}{\partial t} + \frac{dQ}{dt} \frac{\partial H}{\partial Q} + \frac{dP}{dt} \frac{\partial H}{\partial P} = 0. \] (88)
Now we show that the Hamilton’s equation of motion is equivalent to the Newton’s equation of motion. The partial derivatives are calculated as follows,

\[
\frac{\partial H}{\partial P} = \frac{P - qA}{m} \\
\frac{\partial H}{\partial Q} = \frac{1}{m} \left[(P - qA) \times \left(\frac{\partial}{\partial Q} \times (P - qA) \right) - \left((P - qA) \cdot \frac{\partial}{\partial Q} \right) (P - qA) \right] + \frac{\partial \phi}{\partial Q}
\]

\[
= -qv(Q, P) \times \frac{\partial}{\partial Q} A(Q) + qv(Q, P) \cdot \frac{\partial}{\partial Q} A(Q)
\]

(89)

Noting that \(\frac{d}{dt} = \frac{\partial}{\partial t} + (v \cdot \frac{\partial}{\partial Q})\), we get

\[
\frac{dx}{dt} = v
\]

(90)

\[
m \frac{dv}{dt} = -q \frac{\partial \phi}{\partial Q} - q \frac{\partial A}{\partial t} + qv \times \frac{\partial}{\partial Q} A = q(E + v \times B).
\]

(91)

References