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Introduction

Fusion plasmas and other turbulent flows in two dimensional (2D) geometry can undergo

a spontaneous transition to a turbulence suppressed regime. In plasmas such transitions dra-

matically enhance the confinement and are known as L-H transitions. From theoretical and

experimental work, it is now widely believed that generation of stable coherent structures such

as shear flows suppresses cross-field turbulent transport and leads to the confinement improve-

ment. In 2D plasmas and fluids, the net upscale energy flux from small scale turbulent modes to

create large scale coherent structures can dominate the classical Kolmogorov cascade to dissipa-

tive scales. Recently, a low-dimensional dynamical model for L-H transition has been suggested

and analyzed using bifurcation and singularity theories[1]. The model consists of three macro-

scopic energy variables and, when validated against numerical and/or real experimental data,

will provide an economical tool to predict transitions over a parameter space.

In this work we report the results of numerical simulations that both complement the low-

dimensional modeling results and raise some interesting issues in their own right. We focus on a

model for electrostatic resistive drift wave turbulence, the Hasegawa-Wakatani (HW) model[2],

and solve the equations by direct numerical simulation in 2D slab geometry. The HW model

has been widely used to investigate anomalous edge transport due to collisional drift waves.

Moreover, the model is also capable for the self-organization of a shear flow. Thus we consider

the HW model is a good starting point for studying self-consistent turbulence–shear flow inter-

actions, even though it does not describe physics that can be important in specific situations,

such as magnetic curvature, magnetic shear, and electromagnetic effect.

Modified Hasegawa-Wakatani Model

The physical setting of the HW model may be considered as the edge region of a tokamak

plasma of nonuniform density n0 = n0(x) and in a constant equilibrium magnetic field BBB =

B0∇z. Following the drift wave ordering[3], the ion vorticity ζ ≡ ∇2ϕ (ϕ is the electrostatic

potential, ∇2 = ∂ 2/∂x2+∂ 2/∂y2 is the 2D Laplacian) and the density fluctuation n are governed



by the modified HW (MHW) equations,

∂
∂ t

ζ +{ϕ,ζ} = α(ϕ̃ − ñ)−Dζ ∇4ζ , (1)

∂
∂ t

n+{ϕ,n} = α(ϕ̃ − ñ)−κ
∂ϕ
∂y

−Dn∇4n, (2)

where {a,b} ≡ ∂a/∂x∂b/∂y− ∂a/∂y∂b/∂x is the Poisson bracket. Dζ and Dn are the dis-

sipation coefficients, respectively. The background density is assumed to have an unchanging

exponential profile: κ ≡ −(∂/∂x) lnn0 = const. α ≡ −Te/(ηn0ωcie2)∂ 2/∂ z2 is the adiabatic-

ity parameter describing the electron response parallel to the background magnetic field (Te:

electron temperature, η : parallel resistivity, ωci ≡ eB0/m: ion cyclotron frequency, m: ion mass,

e: elementary charge.) In a 2D setting the coupling term operator α becomes a constant co-

efficient, or parameter, by the replacement ∂/∂ z → ikz. As was pointed out recently[4], this

resistive coupling term operates only on the non-zonal components defined by

non-zonal: f̃ = f −〈 f 〉, zonal: 〈 f 〉 =
1
Ly

∫
f dy, (3)

where Ly is the periodic length in y direction. The modification from the original HW model is

attributed to this treatment: α(ϕ −n) → α(ϕ̃ − ñ). Variables have been normalized by

x/ρs → x, ωcit → t, eϕ/Te → ϕ, n1/n0 → n, (4)

where ρs ≡
√

Te/mω−1
ci is the ion sound Larmor radius, n1 is the fluctuating part of the density.

For finite α , the system is unstable against the drift wave instability. The dispersion relation

is given by,

ω2 + iω(b+(1+P−1
r )k4Dζ )− ibω∗−αk2(k2 +P−1

r )Dζ − k8P−1
r D2

ζ = 0, (5)
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Figure 1: Linear stability boundary in α–κ space.

where we defined k2 = k2
x +k2

y , b ≡

α(1 + k2)/k2, the drift frequency

ω∗ ≡ kyκ/(1+ k2), and the Prandtl

number Pr ≡ Dζ /Dn. If Dζ and/or

Dn is finite, there exists a param-

eter region where the drift wave

instability is suppressed. The sta-

bility boundary in the α–κ space

for fixed Dζ = 10−6 and Pr = 1 is

shown in Fig.1. If we choose the



Figure 2: Contour plot of ϕ , n, and ζ in the saturated state. Zonally elongated structure of the

electrostatic potential is clearly visible.

parameters in the unstable region, initially small random perturbations grow linearly until the

nonlinear terms begin to dominate. Then, the system arrives at a nonlinearly saturated state

where the energy input from the background density profile and the energy output due to the

parallel resistivity and the dissipation balance.

Simulation Results

The HW equations are solved in a double periodic slab domain with box size (2L)2 =

(2π/∆k)2 where the lowest wavenumber ∆k = 0.3. The equations are discretized on 256×256

grid points by the finite difference method. Arakawa’s method is used for evaluation of the

Poisson bracket. Time stepping algorithm is the third order explicit linear multistep method.

Figure 2 shows the saturated state of variables. We can observe that the zonally elongated

structure of the electrostatic potential is generated. Once the zonal flow is generated, the cross-

field transport Γn = −κ
∫

n(∂ϕ/∂y)dxdy is significantly suppressed. The build of the zonal

flow, and resulting transport suppression in the MHW model highlight the difference from the

original HW model[5].

In Fig. 3, we plot the ratio of the kinetic energy of the zonal flow (F ≡ 1/2
∫
(∂ 〈ϕ〉/∂x)2dxdy)

to the total kinetic energy (E ≡ 1/2
∫
|∇ϕ |2dxdy) against κ and α . If we fix α and increase κ ,

the zonal flow dominant saturated state suddenly jumps to the zonal flow suppressed state where

rather isotropic vortices appear at κ ∼ 10. On the other hand a transition from the zonal flow

suppressed state to zonal flow dominant state occurs with increasing α and fixed κ at α ∼ 0.5.

If we map the bifurcation diagram obtained in Fig.3, we can recognize that the zonal flow

suppressed (or turbulent dominant) states correspond to the linearly unstable region.
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Figure 3: Parameter dependence of the ratio of the zonal kinetic energy to the total kinetic

energy. Transitions from a low zonal flow to a high zonal flow state occur.

Conclusion

We have performed numerical simulations of the MHW model to study bifurcation structures

in a parameter space. We have shown that, in the MHW model, zonal flows are self-organized,

and turbulence transport is suppressed due to the zonal flows. Sudden transitions from the zonal

flow dominant state to the zonal flow suppressed state are observed if we control parameters

(the strength of the linear drive κ , or the parallel electron adiabaticity α) to the direction to

which the system become more unstable.

The correspondence of the bifurcation diagram obtained from the numerical simulations to

that obtained from the low-dimensional dynamical model will be considered.
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