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Transition in Fusion Plasmas
In many magnetically confined fusion experiments, plasmas may undergo a
spontaneous transition to a turbulence suppressed regime, which is known as L-H

(low- to high- confinement) transition

L-H transition is characterized by steep gradients in density and pressure at edge
region.

Zonal flows play key roles in L-H transition

3 key processes are generation of turbulence by drift wave (primary instability),
self-organization of zonal flow (secondary instability), and destabilization of zonal
flow (tertiary instability)

3 energetic subsystems involved: Background potential energy, Turbulence kinetic
energy, Zonal flow kinetic energy.
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Hasegawa-Wakatani Model
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HW model describes evolution of density fluctuation
n and vorticity ζ = ∇2ϕ ( ϕ: electrostatic potential)
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Modified Hasegawa-Wakatani Model

Resistive coupling term comes from parallel electron response
∂jz/∂z = 1/η∂2(ϕ − n)/∂z2 (Ohm’s Law)

Zonal components subtracted from resistive coupling term since the zonal
components (ky = kz = 0) do not contribute to this term [Hammett et al (1993)]

Modified HW model

∂

∂t
ζ + {ϕ, ζ} =α(ϕ̃ − ñ) − D(−∇2)mζ

∂
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n + {ϕ, n} =α(ϕ̃ − ñ) − κ
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∂y
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where non-zonal ·̃ and zonal components 〈·〉

ϕ̃ = ϕ − 〈ϕ〉, ñ = n − 〈n〉, 〈f〉 =
1

Ly

Z

fdy (f = ϕ or n)

Parallel wave number should be chosen to give maximum growth rate:
α = 4k2kyκ/(1 + k2)2 []Hasegawa & Wakatani (1984)]
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Stability Diagram Provides Indication
of Transition Points
Stability threshold in α (electron adiabaticity) – κ (drive) space
There exists one linearly growing mode if D = 0, which can be stabilized by finite D.

Large κ → destabilizing, Large α → stabilizing.

Growth rate monotonically decreases with kx, peaks at ky ∼ 1.
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Algorithm to Solve MHW Model

The code is originally developed by B. Scott, IPP.

MHW model is solved in the slab geometry

Box size L, determined by smallest wavenumber ∆k = 0.15 [L = 2π/∆k]

Periodic boundary in both x and y direction

Time stepping algorithm is a 3rd order explicit linear multistep method (stiffly stable
method)]. The method for dx/dt = f(t, x) is expressed by

11

6
xn−3xn−1+

3

2
xn−2−

1

3
xn−3 = 3f(tn−1, xn−1)−3f(tn−2, xn−2)+f(tn−3, xn−3

Finite difference method is used for spatial discretization

Poisson bracket term evaluated by the Arakawa’s method (Arakawa (1966))

MPI parallelized to implement on APAC-NF SGI Altix 3700 Bx2 cluster
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Zonal Flow Reduces Transport

Parameters: κ = 1, α = 1, D = 10−4

Contour plot of electrostatic potential shows generation of counter streaming zonal
flows

Most of kinetic energy is contained in zonal flow

Once zonal flow is generated, cross-field transport is significantly suppressed

Complex’07, 3 July (2007) – p.7/??



Transition to Trubulence Observed

Zonal flow kinetic energy: F ≡ 1/2
R

“

∂〈ϕ〉
∂x

”2
dxdy

Sudden transition from zonal flow dominated state to turbulence dominated state
occurs

κ destabilize zonal flows

α stabilizing: adiabatic regime is stable
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Stability of Zonal flow

Zonal flow may be subject to Kelvin-Helmholtz (K-H) instability
We assume ϕ = ϕ0(x) + ϕ̂(x)ei(kyy−ωt), n = n̂(x)ei(kyy−ωt)

»

d2

dx2
− k2

y +
kyV ′′(x)

ω − kyV (x)
−

iα

ω − kyV (x) + iα

„

1 −
kyκ

ω − kyV (x)

«–

ϕ̂(x) = 0 (1)

n̂(x) =
iα + κ

ω − kyV (x) + iα
ϕ̂(x) (2)

Flow profile
∂ϕ0/∂x = V0 sin(λx)

λ = nλπ/L (L: box size), nλ = 4

Eigenvalue problem is solved numerically by shooting method

Fixed boundary condition is assumed for simplicity
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Stability Condition in Two Limits

Tollmien proved existence of marginally stable eigenfunction satisfying (ωs/ks = V (xs))
where xs is the inflection point [Tollmien 1935]

Hydrodynamic Limit [α → 0]

ks,0 =

r

λ2 −
“ nπ

L

”2
=⇒ λ >

π

L
(3)

Adiabatic Limit [α → ∞]

ks,∞ =

r

λ2 −
“ nπ

L

”2
+ 1 =⇒ λ >

r

“ π

L

”2
− 1 (4)

Zonal flows obtained in numerical simulation typically have λ ∼ 0.3, which are unstable

in hydrodynamic limit, and stable in adiabatic limit
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Bifurcation Diagram

Upshift of onset of turbulence [Dimits Shift]

Instability of zonal flow is underestimated

Boundary Condition
Viscosity [singular perturbation]
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Summary and Conclusion

We have performed simulations of modified Hasegawa-Wakatani model

Zonal flows are generated, and the zonal flows suppresses cross-field turbulent
transport in MHW model

Transition from zonal flow dominant to zonal flow suppressed state is observed

Stability of zonal flow against Kelvin-Helmholtz instability is studied, and compared
with numerical results

Upshift of onset of turbulence in parameter space is found

Discrepancy between KH analysis and simulation results may be ascribed to
simplification of KH analysis, and/or accuracy of transition detection by numerical
simulation

Hasegawa-Wakatani model is particulary simple model, but includes enough physics to
analyze the interplay between zonal flow and turbulence which brings transition
observed in fusion plasmas. This model exhibits more interesting phenomena, e.g.
oscillatory behavior like predator-prray model.
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