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MHW model describes evolution of density fluctuation    and vorticity               (    : electrostatic potential)n
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Zonal Flow Generation and Transport Suppression

Contour plot of saturated variables for =1,=1,D=10−6 ,Pr=1
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Kinetic energy
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Cross-field transportZonal kinetic energy
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Sudden transition occurs if we move parameters to
 linearly more unstable direction

Summary and Conclusion
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Transition to Zonal Flow Suppressed Regime

●We have performed simulations of modified Hasegawa-Wakatani model
●Zonal flows are generated, and the zonal flows suppress cross-field turbulent transport in 
MHW model
●Transition from zonal flow dominant to zonal flow suppressed state is observed
●Bifurcation points may be understand as destabilization of zonal flow or some other 
structure. But, what structure?
●To look for the 1st destabilized state, we start to study the behavior near the linear stability 
boundary where only few modes are involved. 
●Oscillatory behavior is observed just beyond linear stability boundary, where drift wave and 
zonal flow are competing [predator-pray]
●Corresponence of bifurcation diagram obtained from numerical simulation and from low-
dimensional model should be considered
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In this work we report the results of numerical simulation of the modified Hasegawa-Wakatani model, which describes resistive 
drift wave turbulence in tokamak edge plasmas. The HW model is a simple model, but contains an interesting physics, i.e. 
turbulence-shear flow interaction. This simulation study also complements the low-dimensional modeling results which we 
already have.
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Modified Hasegawa-Wakatani Model

Dζ= 1 0- 6,  Pr= 1

Uns t abl e

St abl e

kx=0,  ky= 1
kx=1,  ky= 1
kx=5,  ky= 1
kx=1,  ky= 5
kx=5,  ky= 5

1 0- 4 1 0- 2 1 00 1 02

α

1 0- 4

1 0- 2

1 00

1 02

κ

α=1,  Dζ= 1 0- 6,  Pr= 1

St abl e

κ= 1
κ= 1 0- 1

κ= 1 0- 2

 0 1 2 3 4 5 6 7 8 9 1 0

kxρs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

k y
ρ s

D=0

kx ky~1

To understand Bifurcation ...

●Stability of  Zonal Flow [Kelvin-Helmholtz Instability]

●What is the 1st destabilized structure which appears just beyond linear threshold?

phi

=0x  xexpi k y y t 

k1 k2= k3,
k1=0,1 k2=1,0 k3=1,1

3 wave interaction
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D,Dn : dissipation coefficients (Prandtl number                   )Pr=D /Dn
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Resistive coupling term which comes from parallel electron 
response                                                (Ohm's law)

does not act on the zonal components (                )
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Non-zonal: =−〈 〉 , n=n−〈n 〉

Numerical Algorithm to Solve MHW Model−n − n
●MHW model is solved in 2D slab geometry
●Box size    , determined by smallest wavenumber                 [                              ]
●Periodic boundary in both    and     direction
●Time stepping algorithm is a 3rd order explicit linear multistep method
●Finite difference method is used for spatial discretization
●Poisson bracket term evaluated by the Arakawa's method (Arakawa(1966))
●Implemented on APAC-NF SGI Altix 3700 Bx2 Cluster

For finite      one positive growth rate if          (dissipationless)
large         destabilizing, large         stabilizing
Growth rate monotonically decrease with     , peaks at 

Stability Diagram Indicating 1st Bifurcation Points
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