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gyrokinetic simulation that these phase mixing effects can cause electron heating
during magnetic reconnection process. Same mechanism may work for ions for high-g

plasma ~ | Simulation Setup
Introduction

*Magnetic reconnection is ubiquitous in fusion and astrophysical plasmas, which allows We assume uniform background (Vs = VT =VB =0), and 8/6z = 0.
topological change of field lines, and convert field energy into plasma flow and heat. A 0 0 ’
detailed understanding of the phenomena in collisionless (kinetic) regime is still missing. Our B , , max PP _
goal is to provide comprehensive picture of the magnetic reconnection phenomena using Parameters are ka = 0.8, 4 =23.2, aB '(0)/B ™ = 2.6, v = 0 (inviscid ions), m/m = 100,

kinetic model. ,Be= 0.01, Tm/TO: 1, and pi/a =(0.25. For these parameters, other kinetic scales are
p.=d =0.1d =10p .

Simulations are performed using AstroGK [2] in doubly periodic slab domain.

*In the previous gyrokinetic simulation study for linear tearing instability [1,2], we obtained
linear growth rate scaling against Lundquist number S, and successfully confirmed the scaling

agrees well with two-fluid [3] and kinetic theories [4] in low-f regime. In high-f regime, Initial cond.: shifted Maxwellian electron (finite u ), non-shifted Maxwellian ion (u” =0)
coupling between Alfvén wave and ion sound wave becomes significant, and general non- — Electron flow (amplitude and profile) is chosen to give |
polytropic equation of state for ion should be considered. .

: 4 . o
-Following the theory [5] and simulation [6] of electron heating during reconnection, we A= = S(x)  (S(x) is to make periodic)

2
perform gyrokinetic simulations of tearing mode reconnection, and observe electron heating cosh™((x~L,/2)/a)

during the process. Since most of astrophysical and laboratory plasmas are considered to be _ L _ _
weakly collisional, heating may occur due to Landau damping (linear phase mixing) or AstroGK accurately reproduces the Spitzer resistivity, for which the electron-ion

nonlinear phase mixing [7,8,9] with small but finite collisionality. collision frequency (v ) and the resistivity (1) are related by 7/u = 0.380ved32.

The resistivity is recast in terms of the Lundquist number §=2.63 (v z A)'1 (dea)'2

where 7, =a/V,, Vis the Alfvén velocity corresponding to Bymax.
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Overall dynamics is almost independent of collision frequency (collisionless regime) Time: 10 [1,] - Time: 10 [t,], x=Ly+5Ax, y=L,/2
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In gyrokinetics, there exists a generalized energy, which conserves in the collisionless 0 15 20 25 30 © s 43210012345
limit, but, dissipate due to collisions as follows [5,8,10]: xld, v ]
T8 f |6B|2. Velocity space structures near the X point at earlier and later nonlinear phase show
/4 =f Z f s dr ——Z f Lo S( ) dvdr<0 oscillatory structures in both the parallel and perpendicular direction.
2f05 2“0 ] fﬂs coll | r
" [ [ .
The dlSSlpated energy is converted to bulk electron thermal energy, which is out of scope ( :O n CI u S I O n
of the delta-f gyrokinetic framework.
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= A Same mechanism may work for ion heating in high-f regime.
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Figure 4: Collisional dissipation rate of electron for different collisionality.
Convergence study is also show.

-Collisional dissipation rate of electron remains finite as v — 0.

*To resolve the velocity space structure for the very weak collision case, same orders
of grid points are necessary as in the position space.

*These observations indicate fine velocity space structures: Landau damping or FLR
nonlinear phase mixing!?
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