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Conclusions

Simulation setting

fixed parameters:  ' a=23.2, H /A=0.486, ka=0.8, i=0inviscid ion 

Simulation Result
●Magnetic reconnection is ubiquitous in fusion and astrophysical plasmas, which allows 
topological change of field lines, and convert field energy into plasma flow and heat. A 
detailed understanding of the phenomena in collisionless (kinetic) regime is still missing. 
Our goal is to provide comprehensive picture of the magnetic reconnection phenomena 
using kinetic model.

●We have performed a comprehensive linear study (though our ultimate goal is to 
understand nonlinear evolution) of the parameter space covering both the collisional 
and the collisionless regimes in a strong guide magnetic field limit using AstroGK1) 
astrophysical gyrokinetics code. Recently implemented model collision operator enables 
to simulate the collisionless and collisional regimes and their intermediate seamlessly.

●Primary aim of this study is to trace from macroscopic MHD scale down to electron 
inertial scale (    ) by changing collisionality. We may pass through two-fluid (    ) regime, 
kinetic ion regime (     or     ), and then reach at collisionless regime where the electron 
inertia mediates magnetic reconnection process.

●In this presentation, we focus on the collisionless case, and investigate how kinetic 
effects affect the tearing instability.
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Initial condition: shifted Maxwellian electron (                           )
                          non-shifted Maxwellian ion (                                )
                          electron flow (amplitude and profile) is chosen to give A∥ ,eq=
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Introduction

AstroGK solves electromagnetic      -gyrokinetic equations in periodic slab domain

We assume uniform background (                                 ), and ∇ n0=∇ T 0=∇ Bg=0 ∂/∂ z=0
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where                             is the ion sound Larmor radius with isothermal electrons and
cold ions defiining a typical ion scale. We formally use                     as the polytropic 
index (adiabatic). 

Se=T 0 e/mi /ci

 e= i=5/3

●Figures show the growth rate and the current layer width scalings against the  
Lundquist number.

●Red crosses are obtained from GK. Green and blue lines are numerically calculated 
growth rate using the single-fluid [1F] reduced MHD and the two-fluid [2F] reduced 
MHD2). (1F MHD result (asymptotes to FKR3) for high-S regime) is not relevant to the 
present case, but is just shown for reference.) Growth rate for collisionless limit based 
on a kinetic model4) is also shown.

●Two-fluid model overestimates the growth rate

Temperature/Pressure effect

●Fluid models often assume polytropic equation of state
Scaling laws given as                               has ambiguity.
How to define     ? It depends on              .

●For high ion temperature, the ion finite Larmor radius (FLR) effect plays a role.
Porcelli derived the growth rate including the FLR effect4,5):
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resistivity: Spitzer's formula relates the collision frequency and the resistivity /0=0.380ed e
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Off-diagonal components of pressure have no effect

∇×∇⋅Pi ∥=0 ∇⋅Pe ∥=0

However, pressure tensor contributions in ion vorticity equation and Ohm's law are 
identically zero.

Off-diagonal components are not negligibly small
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P xyOnly      and      are        out-of-phase in the y direction with other components
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Temperature dependence

●We have performed gyrokinetic tearing instability simulation using AstroGK for 
collisiionless case, and investigate kinetic effects.

●Gyrokinetic tearing growth rate is slower than the two-fluid MHD model (by factor of ~2) 
implying that the equation of state needs to be re-considred.

●Gyrokinetic result is also compared with the theory based on a kinetic model. 
Dependence on ion temperature seems much weaker than expected.

●If we assume polytropic equation of state, the indices are                            .
However, spatially varying indices suggests non-polytropicity.

●Off-diagonal components of pressure tensor do not affect the dynamics.

 i≈5/3,  e≈1
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