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Simulation setup

●Magnetic reconnection is ubiquitous in fusion and astrophysical plasmas, which allows 
topological change of field lines, and convert field energy into plasma flow and heat. A 
detailed understanding of the phenomena in collisionless (kinetic) regime is still missing. 
Our goal is to provide comprehensive picture of the magnetic reconnection phenomena 
using kinetic model.

●We present a comprehensive linear study (though our ultimate goal is to understand 
nonlinear evolution) of the parameter space covering both the collisional and the 
collisionless regimes in a strong guide magnetic field limit using AstroGK [1] 
astrophysical gyrokinetics code. Recently implemented model collision operator enables 
to simulate the collisionless and collisional regimes and their intermediate seamlessly.

●Primary aim of this study is to trace from macroscopic MHD scale down to electron 
inertial scale (    ) by changing collisionality. We may pass through two-fluid (    ) regime, 
kinetic ion regime (     or     ), and then reach at collisionless regime where the electron 
inertia mediates magnetic reconnection process.

●Only the kinetic description can capture these collisionless effects accurately. This 
study also enables to identify the regions of validity of various fluid modelings.
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Simulations are performed using AstroGK in doubly periodic slab domain
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  → Electron flow (amplitude and profile) is chosen to give 

AstroGK accurately reproduces the Spitzer resistivity, for which the electron-ion collision 
frequency (    ) and the resistivity (   ) are related by                            .
The resistivity is recast in terms of the Lundquist number
where                 ,       is the Alfvén velocity corresponding to       .
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We scan collisionality to study collisional – collisionless transition. As     is decreased, the 
current layer width     becomes narrower, and the different ion and electron kinetic scales 
becomes important. We split our study into two sets:

Case 1)
Case 2)

electron scale≪ion scale∼δ≪a
electron scale∼δ≪ion scale<a

νe
δ

Case 1:                     (MHD and Two-fluid MHD)ρSe /a=0.014

Case 2:                   (Collisional – Collisionless Transition)ρSe /a=0.14

Figure 1. Scaling of growth rate and current sheet width against     for                     .S ρSe /a=0.014

Figure 2. Scaling of growth rate and current sheet width against     for                   .S ρSe /a=0.14

●Comparisons between GK simulation and a reduced two-fluid model [2] show excellent 
agreement when beta is very low.
●The reduced two-fluid model requires                     . This condition is marginally 
satisfied only for                    .
●The over-estimation of the growth rate by the two-fluid model at higher             is 
possibly due to either a breakdown in the low-    ordering of the fluid model or a gradual 
onset of kinetic effects (e.g., the invalidity of a simple isothermal equation of state.)   
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We observe transition from collisional to collisionless regime. We observe better 
agreement between GK and 2F for lower values of     ; however,     increases and the 
collisionless regime is approached, the agreement becomes poorer for any values of     . In 
this regime, electron kinetic effects (Landau damping and even finite electron orbits [note 
that for            ,             ) play an important role.
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βe=0.3 δ/ρe≈2

Equation of states are not polytropic

Kinetic Aflvén wave dynamics is dominant only for low beta
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It is known that for high ion temperature plasmas, the tearing growth rate scales as           
               because of the dispersion of the kinetic Alfvén wave [3]. However, the previous 
GK tearing mode simulation [4] shows the growth rate seems not depending on ion 
temperature. We have revealed that the predicted scaling only holds for very low beta.

Conclusions
●We have performed linear gyrokinetic simulations of the tearing instability.
It is shown that the growth rate scaling with collisionality agrees well with the prediction 
by a two-fluid model only for a low plasma beta case.
●Electron wave-particle interactions, FLR, and other kinetic effects invalidate the fluid 
theory in the collisionless regime, where general non-polytropic equation of state for 
pressure perturbation should be considered.
●We have also shown that the theoretical scaling against the ion background temperature 
can be recovered only in the very low beta limit.
●See [5] for more detailed discussions.

Figure 4. Scaling of growth 
rate and current sheet width 
against                  .τ=T 0i /T 0e

Figure 3. Polytropic indices of ions and electrons in the perpendicular 
and the parallel directions.

Γs= p̃s /(T 0s ñs)
If an equation of state is polytropic          , the polytropic index is calculated from the 
density and pressure fluctuations as                       . It is seen that while           outside the 
current layer, it is highly peaked in the current layer due to the Landau damping. A 
spatially varying polytropic index means that the equation of state is not polytropic.            
     also varies widely over the ion inertial scale in all cases.
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Δ ' a=23.2, a B y ' (0)/B y
max=2.6, ka=0.8, νi=0

(me/mi ,βe)=(0.01,0 .3) ,(0.0025,0 .075) ,(0.000625,0.01875)
Parameters: (inviscid ions)

γ τA∼τ1/3
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