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Abstract

Charged particle chaos and its collective effect in a magnetic reconnection

like field is investigated numerically. We propose Y-shaped model field to

describe magnetic reconnection and study the behavior of charged particles in

the microscopic point of view. The existence of at least one positive Lyapunov

exponents shows that the motion of the particles is chaotic. Then, we switch

to the way of statistical mechanics to investigate macroscopic properties of

the chaotic motion of the particles. Collective of particles is accelerated in

average affected by the electric field perpendicular to the magnetic field in

weak magnetic field region. The finite average velocity in the direction of

electric field means the existence of effective resistivity even in a collision-less

regime. The effective resistivity due to the effective collision induced by chaotic

motion is estimated. Ohmic heating by this effective resistivity is also shown.

The effective collision induced by the collective of particles which behave like

chaotic is essentially a different mechanism from classical collision.
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Chapter 1

Introduction



The concept of chaos was first introduced to the science to study the plan-

etary motion. It was realized to be essentially impossible to solve analytically

the dynamics of more than three celestial bodies with mutual interactions by

the gravitational force. H. Poincaré suggested the importance of an qualita-

tive analysis of the dynamics, such as to study the reason or the geometrical

property of the complex orbit. Recent years, the concept of chaos become one

of the main theme of science and applied to various fields. Plasma physics

also contributed to the chaos theory. The structures of the magnetic fields

in toroidal plasma confinement vessels or the dynamics of the charged parti-

cles in electromagnetic fields may become chaotic. The purpose of this thesis

is to explain the production of anomalous resistivity in a magnetic reconnec-

tion phenomena by applying the chaotic theory to the dynamics of charged

particles.

Magnetic reconnection [1][2][3] is important phenomena because of its con-

nection with the topology of field lines. In general, a change of topology means

a change of equilibrium, and a release of magnetically stored energy. It occurs

in so many different contexts. Examples are: solar flares, the magnetosphere

of the earth, dynamo theories of the origin and evolution of fields in stars,

accretion disks and galaxies, and laboratory, and fusion plasmas.

Magnetic reconnection concerns the breaking and mending of magnetic field

lines. Because the resistance is low and inductance is large in high temperature

plasmas, the decay time of field is long and any magnetic field changes very

slowly. If the plasma resistivity was zero, the lines of force would indeed

be embedded in the plasma, and would follow the plasma displacements to

preserve the number of lines and their topology. However, there are conceivable

motions that crush the lines together leading to such large current densities

that even for a very small resistivity a line can cease following the plasma
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and can break and change its topology. Such intense current layers are the

seat of magnetic reconnection. In these layers a line can break in two and

its ends become attached to other lines that are also breaking. The whole

process is conveniently called magnetic reconnection. Such topological change

corresponds to a change from one equilibrium state to another. Since the two

states may have different magnetic energies, this transfer between equilibrium

corresponds to a conversion of magnetic energy to other forms of energy, such as

kinetic or thermal energy. If the energies of two equilibria are greatly different,

then a large amount of energy is released.

The main problem of the magnetic reconnection is that we can not explain

fast energy release rate. Various reconnection models are suggested to explain

this fast reconnection rate. The first quantitative model of magnetic reconnec-

tion was proposed by Sweet and Parker separately. Sweet-Parker reconnection

requires long current sheets and is a rather slow process. The model introduced

by Petschek is also important [4]. He noted that considering the effect of slow

mode magnetohydrodynamic (MHD) shock on the dissipation region greatly

increases reconnection rate. However, it is at present not clear that Petschek

reconnection can evolve in natural systems. These theories both treat by the

way of MHD and refer to the collisional regime with at least a small resistivity.

However, in high temperature rarefied plasmas, such resistivity do not exist a

priori. Hence, the MHD approach becomes invalid, and one should switch to

a kinetic approach[5] [6]. Also charged particle motion in a reconnection like

magnetic field is investigated widely [7] [8] [9]. We consider the stochasticity

of the charged particle motion can be an effective mechanism for collisionless

anomalous resistivity and lead the fast energy release.

The charged particle chaos in a simple nonuniform one dimensional mag-

netic field with null points and radio-frequency electric field has been investi-
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gated. In such a field, charged particle describes a meandering orbit and the

mixing effect of chaos yields a rapid production of kinetic entropy. Although

this process saturates a short time, unceasing heating occur by introducing

the cascade mechanism toward the collision region. The effective resistivity

enhanced by the mixing effect of chaos has been estimated [10]. This non-

linear process can be applied to plasma production that meets the increasing

demand for a low-gas-pressure plasma source suitable for use in ultrafine etch-

ing of semiconductors[11].

In this thesis, we propose Y-shaped magnetic field to model a reconnection

process and study the dynamics of charged particle motion in such a field.

The complexity of the field brings about the chaotic motion of particle. Fur-

thermore, because of its geometrical properties, the system becomes open to

a flow of particles, and then an exchange of energy from field to the particles

steadily occurs. First, we investigate the microscopic behavior of the particles

and show that is chaotic. There is still broad gap between the microscopic

behavior and the macroscopic quantity. Only statistical analysis gives us in-

formations about the macroscopic property of the system. Thus, we borrow

the way of statistics and estimate the macroscopic quantities like temperature,

current and resistivity to what the microscopic chaos brings about.
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Chapter 2

Model Equation



2.1 Two Dimensional Y-Shaped Model

We propose two dimensional Y-shaped magnetic field configuration to study

charged particle dynamics in a magnetic reconnection like field, that is,

B =




bxy

By(x)

0




(2.1)

where By(x) is

By(x) =





by(x− Lx) (x > Lx)

0 (|x| ≤ Lx)

by(x + Lx) (x < −Lx).

(2.2)

The stream line of this model magnetic field with Lx = 2 and bx = by is

shown in Fig. 2.1. Magnetic field is null at the region where |x| < Lx and

y = 0, so this plane is called neutral sheet. In the vicinity of the magnetic

null sheet (hatched region), magnetic field is so weak that particles are not

magnetized and they behave like chaotic. Conversion of magnetic energy to

the kinetic energy of the plasma occurs in this domain, so we can refer it as the

dissipation region. For steady reconnection, we also have a uniform electric

field in −z direction, E = −E0ez. Potentials which describe the field are

represent as

Az(x, y) =





1
2
byy

2 − 1
2
bx(x− Lx)

2 (x > Lx)

1
2
byy

2 (|x| ≤ Lx)

1
2
byy

2 − 1
2
bx(x + Lx)

2 (x < −Lx)

(2.3)

φ(z) = E0z. (2.4)

Here, we mention the characteristic of this configuration. First, this con-

figuration is similar to Harris-type configuration which is often employed to

discuss the magnetic reconnection. Harris-type configuration is an equilibrium
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solution of the Vlasov-Maxwell equations which represented as

B ∝ tanh(
x

L
) (2.5)

where L is the global scale length. A minutes derivation and discussion about

Harris configuration is given in Appendix A. In the case that x is much smaller

than L, hyperbolic tangent of x is approximated by x, so that B ∝ x/L. We

consider this model configuration as a simplified Harris-type one in the vicinity

of the neutral sheet. The second characteristic is the complexity of the field.

Because magnetic field depends on x and y, the symmetry of a Hamiltonian of

particle in this system is broken. So, the motion of the particle can be chaotic.

This is discussed in detail in Sec. 3.1. Finally, in this system, E × B drift

provides plasma inflow to the dissipation region along the y axis and outflow

along the x axis. This effect and geometrical property such as bifurcation of

the magnetic field make this an open system. In the dissipation region, the flow

is violated because of the magnetic null and particles experience the stochastic

mixing.

2.2 Normalization

We consider the Newton’s equation of motion in the given field,

m
dv

dt
= q(E + v ×B), (2.6)

and normalize it by the parameters defined in Table 2.1. The relation between

the normalizing parameters are given by

B0 = bxLy (2.7)

T0 = 1/
|q|B0

m
=

m

|q|B0

. (2.8)
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Table 2.1: Normalizing Parameters.

Coordinate Ly Global length scale of the system

Magnetic field B0 Magnitude of the field at y = Ly

Time T0 Reciprocal of the cyclotron frequency at y = Ly

Thus, we obtain normalized equation of motion

dv̂

dt̂
= ±(

|q|T 2
0

mLy

E + v̂ × B̂). (2.9)

where + and - stand for an ion and an electron, respectively, and hat above

the variables denote that they are normalized quantities. Then, we define the

parameter describe the intensity of the electric field,

α ≡ |q|T 2
0

mLy

=
m

|q|LyB2
0

E0. (2.10)

By substituting the field given in by Eqs. (2.1) and (2.2) into Eq. (2.9), we

finally obtain the normalized equations for an electron,





˙̂vx = v̂zB̂y

˙̂vy = −v̂zŷ

˙̂vz = α− v̂xB̂y + v̂yŷ,

(2.11)

where

B̂y(x̂) =





β(x̂− γ) (x̂ > γ)

0 (|x̂| < γ)

β(x̂ + γ) (x̂ < −γ).

(2.12)

β ≡ by/bx is the ratio of the gradient of the magnetic field, γ ≡ Lx/Ly is the

ratio of the scale of x direction to y direction. Parameters α and γ are the

controll parameters, while β is fixed to unity through all simulation discussed

in Chapter 4. At the limit γ → ∞, the magnetic field is considered to be
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one dimensional field. A particle motion in such a field is discussed in section

3.1. The relation between the normalized and the real value is summarized in

Table 2.2.

Table 2.2: Relation between normalized and real values.

x̂ = 1 10−2 m

B̂0 = 1 10−2 T

T̂0 = 1 5.7× 10−10 s

α = 1 1.8× 105 V/m

Typical values of magnetic field and the scale length of the dissipation

region in various situations are given in Table 2.3.

Table 2.3: Typical values of scale length and magnetic filed in observed mag-

netic reconnection processes.

Scale Length [m] Typical Magnetic Field [G]

Solar Corona 108 10

Magnetosphere 6.4× 106 0.31

Galactic Disks 1018 − 1020 5× 10−6
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Figure 2.1: Schematic drawing of Y-shaped magnetic field.
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Chapter 3

Method for Analyzing the

Chaotic System



3.1 Integrability of Charged Particle Motion

in Electromagnetic Field

The dynamics of a charged particle in an electromagnetic field can be described

by the Hamilton’s equation of motion,

d

dt




x

p


 =




∂H
∂p

− ∂H
∂x


 , (3.1)

where H is a Hamiltonian which is generally a function of coordinate x, mo-

mentum p and time t,

H(x,p, t) =
(p− qA(x, t))

2m
+ qφ(x, t). (3.2)

A and φ are magnetic potential and electrostatic potential, respectively, m

is mass and q is charge of the particle. In the case that the dynamics can

be represented by 2N dimensional Hamiltonian flow, we can switch to some

coordinate system in which the stream line is reduced to the straight line by

performing a certain canonical transformation if and only if there exist N

constants of motion [12] [13]. Constants of motion α must be in involution,

i.e., their Poison brackets with each other must be zero:

{αi, αj} =
∑

k

[
∂αi

∂xk

∂αj

∂pk

− ∂αi

∂pk

∂αj

∂xk

] = 0. (3.3)

One can easily find the constants of motion if the dynamics is described by

a Hamiltonian form. When the Hamiltonian is independent of a variable,

conjugate of the variable is a constant of motion.

Here, we show some examples of integrability analysis of a charged parti-

cle dynamics in general electromagnetic fields. We consider the motion in a

straight reversed magnetic field, B = B′xez (Fig. 3.1). For the magnetic field

generated by the vector potential Ay = B′
2

x2, the Hamiltonian is given by

H(x, px, py, pz) =
p2

x

2m
+

p2
z

2m
+

(py − qB′
2

x2)2

2m
(3.4)
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which immediately gives three constants of motions, H, py, pz, then, this sys-

tem is integrable. If we define the effective potential Veff and new Hamiltonian

H ′ by

Veff =
(py − qB′

2
x2)2

2m
(3.5)

H ′ = H − p2
z

2m
=

p2
x

2m
+ Veff, (3.6)

the problem is reduced to one dimensional quadrature in the effective potential.

The effective potentials and the phase space diagrams in x-px plane is shown

in Figs. 3.2 and 3.3.

It is important to study the application of electric fields transverse to the

magnetic field or a normal component of magnetic fields. These components

can break the conservation of constants of motion and then the system may

become chaotic. First, we consider a time independent electric field transverse

to the magnetic field, E = Eyey. The effective potential changes to be

Veff =
(py − qB′

2
x2 + Eyt)

2

2m
. (3.7)

This gives the description that the potential well in Fig. 3.2 moves with

constant E ×B drift velocity. The equation of motion becomes

d2x

dt2
= −qB′

m
(px +

qB′

2
x2 + Eyt)x. (3.8)

The limiting case of t →∞, the equation is approximated by the equation

d2x

dt2
∼ xt. (3.9)

The Airy function can be satisfied this equation, hence this system is still

integrable.

It is proved that time dependent inductive electric field can lead the onset

of chaos and the irreversible heating [14] [15]. The application of normal
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component of magnetic fields and the onset of chaos is also studied in detail

by many researchers [16-22]. The configuration that we proposed also has a

normal magnetic field component which can lead the onset of chaos.

3.2 Lyapunov Exponents

Lyapunov exponents play an important role in the theory of both Hamiltonian

and dissipative dynamical systems. They provide a computable, quantitative

measure of the degree of stochasticity for a trajectory. In addition, there is

a close link between Lyapunov exponents and other measures of randomness

such as the Kolmogorov entropy and the fractal dimension.

Roughly speaking, the Lyapunov exponents of a given trajectory charac-

terize the mean exponential rate of divergence of trajectories surrounding it.

The theory of Lyapunov exponents was applied to characterize stochastic

trajectories by Oseledec. The connection between Lyapunov exponents and

exponential divergence was given by Benettin et al. and by Pesin, who also

established the connection to Kolmogorov entropy. The procedure for com-

puting the Lyapunov exponents was developed by Benettin et al. . Here, we

give the properties of the Lyapunov exponents.

We define the Lyapunov exponents for the flow x(t) generated by the

smooth vector field v in N dimensional phase space

dx

dt
= v(x(t), t) (3.10)

Consider a trajectory and a nearby trajectory with initial condition x0 and

x0 + δx0. The time evolution for δx is found by linearizing Eq. (3.10) to

obtain

dδx

dt
= M (x(t)) · δx (3.11)
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where

M =
∂v

∂x
(3.12)

is the Jacobian matrix of v. We now introduce the mean exponential rate of

divergence of two initially close trajectories,

λ(x0, δx) = lim
t→∞

1

t
ln

d(x0, t)

d(x0, 0)
(3.13)

where d(·, ·) is some metric for the phase space, for example, an Eucledian

norm. There is an N dimensional basis {êi} of δx such that for any δx, λ

takes one of the N values

λi(x0) = λ(x0, êi), (3.14)

which are the Lyapunov characteristic exponents. The Lyapunov exponents

are related to the evolution of an infinitesimal N dimensional sphere in the

phase space (Fig. 3.4). The sphere whose principal axis is defined by {êi}
will be deformed into an ellipsoid. The Lyapunov exponents can be ordered

by size,

λ1 ≥ λ2 ≥ · · · ≥ λN . (3.15)

λ1 is called the maximum Lyapunov exponent. In the case λ1 > 0, initially

nearby trajectories diverge exponentially at t → ∞. However, because the

volume of the sphere conserves according to the Liouville theorem, they do

not diverge in all the directions. If the sphere is expanded in some direction,

it must be shrunk in the other directions.

The approach for determining the Lyapunov exponents from a set of dif-

ferential equations has been developed [23]. The algorithms for the Lyapunov

exponents from time series have been also presented .

There are two difficulties in calculating the Lyapunov exponents. Even in

the linearized system, the principal axis vectors diverge in magnitude. It is one
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problem but can be easily avoided. The other problem is that the direction of

each principal axis changes at every moment and each vector falls along the

local direction of most rapid growth.

These two problems are overcome by the iterative use of the Gram-Schmidt

reorthonormalization (GSR) procedure. Let the initial condition at t = tk for

linearized equation (3.11) be {δx1(tk), δx2(tk), · · · , δxN(tk)}, which is a set of

orthonormal vectors spanning the surface of an infinitesimal sphere. The set

of vectors evolves to {δx′1(tk+1), δx
′
2(tk+1), · · · , δx′N(tk+1)} after tk+1− tk. The

set of evolved vectors does not take the form of a sphere but something like

ellipsoid. Before the modification of the infinitesimal phase space does not be-

come too extreme, we use the GSR procedure. After the reorthonormalization,

the set of vectors is replaced with a new set of orthonormal vectors:

δx1 =
δx′1
|δx′1|

δx2 =
δx′2 − (δx′2 · δx1)δx1

|δx′2 − (δx′2 · δx1)δx1|
· · · (3.16)

· · ·

δxN =
δx′N − (δx′N · δxN−1)δxN−1 − · · · − (δx′N · δx1)δx1

|δx′N − (δx′N · δxN−1)δxN−1 − · · · − (δx′N · δx1)δx1|

where the time tk+1 is omitted from all vectors in equations. Because each

vector δx′1 tends to point to the direction of most rapid growth, and because

the direction of the first vectors is not affected by the GSR procedure, this

vector seeks out the most rapidly growing direction after many replacements.

Similarly, the space spanned by the first and second vectors tends to lie on the

two dimensional space that is most rapidly growing. Hence the second vector

seeks out the direction of the second most rapid growth. Thus we can define

16



the i-th Lyapunov exponents as

λi = lim
M→∞

1

tM − t0

M−1∑

k=0

ln
|δx′i(tk+1)|
|δxi(tk)| (3.17)

where tk is the time of the k-th replacement step. The Lyapunov exponents

obtained from the GSR procedure are then ordered from largest to smallest.

As discussed above, i-th Lyapunov exponent is a growth rate of the i-th

most rapidly growing principal axis. Consequently, the sum of the Lyapunov

exponents provides a time derivative of the volume of an infinitesimal phase

space. Dynamical systems are divided broadly into two groups; one is a dis-

sipative system and the other is a conservative system. While the sum of the

Lyapunov exponents reduces in dissipative systems, it is preserved in conser-

vative systems. For example, autonomous Hamiltonian system is given by

d

dt




q

p


 =




∂H
∂p

−∂H
∂q


 (3.18)

Here, we measure the rate of change of the volume V from Lie derivative

1

V

dV

dt
=

∂q̇

∂q
+

∂ṗ

∂p
= 0. (3.19)

The Lyapunov spectrum, the set of Lyapunov exponents, is a useful diagnostics

to characterize complicated systems. It may be improper to describe them only

with the Lyapunov spectrum. Unpredictable chaos, however, is reflected in the

systems that contain at least one positive Lyapunov exponents.

3.3 Statistical Description of the System

In a chaotic dynamical system, it is meaningless to study the precise micro-

scopic state because even an infinitesimal error increases exponentially with

time. To find adequate global features to characterize the behavior of the

system, we switch to the way of statistical mechanics [24-27].
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The basic idea of statistical mechanics is that the system may be replaced

with a suitably chosen ensemble of systems, all having the same equations

of motion but different initial conditions. The structure of the ensemble is

specified by a density function ρ(x) such that ρ(x)dx is the number of sample

systems whose initial microstate lies in the volume element dx. This substi-

tution of an ensemble for a single system has the effect of turning x into a

stochastic variable X. The range of X consists of all possible microstate and

the probability density is, apart from normalization, equal to ρ;

PX(x) =
ρ(x)∫

ρ(x′)dx′
(3.20)

Once this basic idea has been accepted it only remains to pick the appropriate

PX .

In statistical mechanics, we suppose that the weight is proportional to the

volume of the portion of phase space for a stationary statistical ensemble. This

is a fundamental principle of statistical mechanics, which is called the principle

of equal probability or a priori probability, as well as the principle that the

time-average is the same as the ensemble-average (ergodic hypothesis), and

supported by the Liouville theorem. The Liouville theorem says that in the

phase space the points representing the dynamical states of an ensemble of

identical systems move like particles of an incompressible fluid, that means

their point density remains unchanged. We can derive the canonical distribu-

tion for a give average energy E by maximizing the entropy with the principle

of a priori probability. In a thermal equilibrium with average energy E, the

canonical distribution becomes

Pi = exp[−βEi]. (3.21)

Here, T = 1/kBβ is identified with absolute temperature, kB is the Boltz-

mann constant. Once, the canonical distribution is realized, we can construct
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thermodynamic quantities.

On the other hand, we can construct Gaussian distribution by the cen-

tral limit theorem. Let X1, X2, · · · , XN be a set of N independent stochastic

variables, each having the same Gaussian probability density PX(x) with zero

average and variance σ2. Their sum Y has the probability density

PY (y) =
1√

2πNσ2
exp

[
− y2

2Nσ2

]
. (3.22)

Thus < Y 2 >= Nσ2 grows linearly with N . On the other hand, the distribu-

tion of the arithmetic mean of the variable X becomes narrower with increasing

N , 〈(
X1 + X2 + · · ·+ XN

N

)2
〉

=
σ2

N
. (3.23)

It is therefore useful to define a suitably scaled sum

Z =
X1 + X2 + · · ·+ XN√

N
, (3.24)

It has a variance σ2 and hence

PZ(z) =
1√

2πσ2
exp

[
− z2

2σ2

]
. (3.25)

The central limit theorem states that, even when PX(x) is not Gaussian, but

some other distribution with zero average and finite variance σ2, Eq. (3.25) is

still true in the limit N →∞.

Once, we chose an appropriate distribution P (x), we define the ensemble

average of quantity A

Ā =

∫
A(x)P (x)dx∫

P (x)dx
. (3.26)

In a chaotic system, we can not assume that the principle of a priori distri-

bution is realized. So, we must study the distribution of stochastic variables

by direct numerical simulation. If the Gaussian distribution is constructed,

we consider the priciple of a priori distribution is realized and define ensemble

average by the distribution.
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Figure 3.1: Schematic drawing of one dimensional reversed magnetic field.
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Figure 3.2: Effective potential given by Eq. (3.5) and phase space structure

in x-px plane for the case that qPy > 0.
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Figure 3.3: Effective potential given by Eq. (3.5) and phase space structure

in x-px plane for the case that qPy < 0.
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Figure 3.4: Time evolution of infinitesimal sphere spanned by the basis {êi}
of δx. It will be deformed into an ellipsoid.
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Chapter 4

Numerical Results



4.1 Particle Trajectory and Escape Time

First, we study the motion of electron in the Y-shaped magnetic field and

uniform electric field perpendicular to the magnetic field. Normalized equation

(2.11) is integrated by adaptive stepsize controlled Runge-Kutta method [28].

Typical trajectories of the particle in x-y plane are shown in Figs. 4.1 and

4.2. Both trajectories are calculated with γ = 1 and the initial condition

x̂ = (0.2, 0.0, 0.6) and v̂ = (1.0, 0.0, 1.0). Fig. 4.1 is for the case that α = 0.001

and Fig. 4.2 is for α = 0.01, which is ten times larger than the value for the

Fig. 4.1. Dotted line plotted in the figures represents the neutral sheet in the

region that ŷ = 0, |x̂| < γ. In Fig. 4.1, the particle oscillates in y direction

with bouncing in x direction because of the mirror effect. When the particle

passes the bifurcation points of magnetic field at x̂ = ±γ, it stochastically

decides to go upward or downward. This is the orbital instability. During

this motion, the particle is accelerated by the electric field in the dissipation

region because it can not be magnetized in weak magnetic field region, and

it drifts with E ×B drift velocity in strong magnetic field region outside the

dissipation region. In Fig. 4.2, the particle initially exhibit the same motion

as the particle in Fig. 4.1, and then go out from the dissipation region after a

certain time, and transfers to the phase in which it exhibits periodic bounce

motion. Both particles transfers its phase from chaotic to regular phase, but

the time of staying in the initial phase is different. The electric field affects on

this transition time. In Fig. 4.3, we show the time series of x̂ with the same

parameters as the Fig. 4.2. We define the “escape time”: Tescape by the time

when particle never enters the dissipation region. For example, Tescape = 165

in the case of Fig. 4.3. Because Tescape differs between the case for different

initial conditions, it is estimated by averaging over the values of ten different
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initial conditions. In Fig. 4.4, average escape time against normalized electric

fields are plotted. The average escape time shows power to the minus one

dependence on α, Tescape ∼ α−1. This is because the escape time is determined

by the E ×B drift velocity.

4.2 Lyapunov Exponents

Next, we calculate Lyapunov exponents to judge whether the trajectory is

chaotic or not. The existence of at least one positive Lyapunov exponent

means the trajectory is chaotic. Examples of calculated Lyapunov spectrums

are shown in Figs. 4.5 and 4.6 with the same parameters as Figs. 4.1 and

4.2. In the Fig. 4.1, particle moves both in magnetized and unmagnetized

regions and exhibit both regular and chaotic motions. This is the reason why

the maximum Lyapunov exponent do not settle into some values. However,

there is positive Lyapunov exponent in the Fig. 4.5, that is, we can say that

the system is chaotic. In Fig. 4.6, the phase is transfered to the regular one

after the escape time passed, and the maximum Lyapunov exponent gradually

decreases with time and becomes close to zero. In Figs. 4.7 and 4.8, we show

the sum of Lyapunov exponents for the cases of Fig. 4.5 and 4.6. The sum

of Lyapunov exponents is equivalent to the Jacobian of the set of differential

equations. Because the Hamiltonian does not depends on t explicitly in this

system, the sum of Lyapunov exponents is zero. In the figures, the sum of

Lyapunov exponents is extremely small relative to each maximum Lyapunov

exponent, thus we can suppose the preciseness of the simulation is hold.

In Figs. 4.9 and 4.10, we plot the dependence of the maximum Lyapunov

exponent on γ. Each figure corresponds to the case that α = 0.001 and α =

0.01, respectively. Both figures show that the maximum Lyapunov exponents

25



have a tendency to increase with decreasing γ. This result agrees with the

description that the particle is scattered effectively when passing through the

magnetic field bifurcation point at x = ±γ.

The maximum Lyapunov exponents are estimated to the order 10−1. The

Lyapunov exponents are the mean divergence rate of nearby trajectories and

then, the reciprocal of the maximum Lyapunov exponents are considered as

a decorrelation time. This decorrelation time scale becomes the order 10 in

normalized unit.

4.3 Velocity Distribution

We have studied the characteristic of the particle motion in the given field.

However, there is a broad gap between the microscopic and macroscopic quan-

tities. To explain macroscopic phenomena, we have to switch to the way of

statistical mechanics. In a chaotic system, the principle of a priori distribu-

tion must be examined by direct simulations. So, we consider many particle

dynamics which all having the same equation of motion but different initial

conditions. If the velocity distribution relaxes to the Gaussian distribution,

the principle of weight probability is considered to be hold.

First, we set total number of the particles 103, initial velocity distribution

uniform between v̂ = −0.5 and v̂ = 0.5 and initial position distribution also

uniform between x̂ = −1.0 and x̂ = 1.0, then examine the change of velocity

distribution in three directions. In Figs. 4.11 to 4.16, we plot time evolution of

velocity distributions and standard deviations of the velocity distributions in

each direction. In Figs. 4.11, 4.13, 4.15, the parameters are set α = 0.005 and

γ = 1. Initial distribution, distributions at time t̂ = 100, t̂ = 200 and Gaussian

fitting curve are plotted together. After the decorrelation time passed, the
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almost Gaussian distribution is realized. For the realized velocity distribution,

we define the ensemble average of quantity A

Ā =
1

N

N∑

i=1

δ(v − vi)A(vi) (4.1)

N =
N∑

i=1

δ(v − vi) (4.2)

where δ is the Dirac delta.

In Figs. 4.12, 4.14, 4.16, we plot the time evolution of standard deviation

of the velocity distribution for α = 0.005 and γ = 1, 2, 5. The standard

deviations linearly increase with time until the escape time. Until the escape

time, unceasing heating in all the directions induced by chaos occurs. The

gradient of each line increases with γ. This results are discussed in the next

section.

4.4 Effective Resistivity

We see in the Fig. 4.15 that the velocity distribution in z direction shifts in

positive direction, that is, average velocity in z direction is not equal to zero.

This is because unmagnetized particle is accelerated by the electric field in

the dissipation region, while particle only E ×B drifts in magnetized region.

The ensemble averaged velocity in z direction for α = 0.001, γ = 1 is plotted

in Fig. 4.17. Although the average velocity perturbes by statistical error, we

can see the tendency that it initially increases, then saturate after a certain

time. This saturation mechanism can be regarded as the effective collision by

the chaos. According to the analogy to the friction force, the average velocity

becomes proportional to the function,

v̄ ∝ 1− exp(− t̂

Tr

), (4.3)
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where Tr is a relaxation time. So, we estimate the effective collision frequency

νeff ≡ 1/Tr by fitting with the function. Dependence of effective collision

frequency on normalized electric field is summarized in Table. 4.1.

Table 4.1: Dependence of relaxation time and effective collision frequency on

normalized electric field (γ = 1).

α 0.001 0.002 0.005 0.01

Tr 178.7 121.6 35.79 22.08

νeff[×107/s] 0.982 1.44 4.90 7.95

We can derive the effective resistivity by two way from the results of the

average velocity in z direction. First, we use the saturated average velocity

v̄∞. Current is given by the following equation,

j = env̄∞, (4.4)

where n is density. We can calculate the corresponding effective resistivity

from the Ohm’s law,

η1 =
E

j
=

1

en

E

v̄∞
. (4.5)

The second way to estimate effective resistivity uses the effective collision fre-

quency, which is a relaxation time scale of momentum. The averaged collective

motion of particles in z direction can be represented as follows,

m
dv̄

dt
= qE −mνeffv̄. (4.6)

The effect of magnetic field is supposed something like friction force represented

by the second term in Eq. (4.6). Solving this equation yields

v̄ =
qE

mνeff
(1− exp(−νefft)). (4.7)
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This gives the relation between νeff and v̄∞, that is,

v̄∞ =
qE

mνeff

. (4.8)

Using this saturated average velocity and Ohm’s law, we obtain another for-

mula of resistivity,

η2 =
mνeff
ne2

. (4.9)

This is an usual derivation of resistivity. By using these two formulas, we esti-

mate the effective resistivity induced by chaotic motion of electrons. Because n

is arbitrary, we plot the effective resistivity calculated by both equations times

n against α in Fig. 4.18. η1 is larger than η2 by a factor one to three. This

means the relation (4.8) is violated. We conclude that while in single particle

dynamics the relation (4.8) holds, effective mass or charge of the collective of

particles are different from a single particle or the way of acting the electric

field on the collective of particles are different from it on a single particle and

the relation is violated in this system. This is the collective effect of chaotic

system. In Fig. 4.17, we also plot the line which represents free acceleration

of a single particle by the electric field without magnetic field. The fact that

the gradient of the numerical result is smaller than that of the free accelera-

tion proves that the difference between the single particle dynamics and the

collective dynamics.

In Fig. 4.19, dependence of saturated average velocity on γ is shown. The

figure shows that saturated velocity increases with γ, that is, the resistivity

decreases with increasing γ. This results again agree with the description that

γ weakens the chaotic effect. Now, we go back to the results of Sec. 4.3. We

explain well the results that the collective of particles is more rapidly heated in

the case that γ is larger by Ohmic heating induced by this effective resistivity.

Ohmic heating rate represented by ηj2 is propotional to v̄∞ because j ∝ v̄∞ and
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η ∝ v̄−1
∞ . Thus, we conclude that if the Ohmic heating occurs by the effective

resistivity induced by chaos, the larger γ becomes, the more effectively the

collective particles is heated.
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Figure 4.1: Typical orbit in x-y plane for α = 0.001. Particle moves in a weak

magnetic field region.
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Figure 4.2: Typical orbit in x-y plane for α = 0.01. Particle initially moves

in a weak magnetic field region, then go out to the left hand side, which is a

strong magnetic field region.
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Figure 4.3: Solid line shows time series of x̂. After Tescape, particle never

crosses the x̂ = 0 line.

33



10

100

1000

10000

0.001 0.01

γ=1
γ=2
γ=5

γ=10

T
es

ca
pe

α

Figure 4.4: Dependence of escape time Tescape on α and γ. Tescape shows

the power to minus one dependence on α.

34



-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000 1200 1400

L
ya

pu
no

v 
E

xp
on

en
ts

t

Figure 4.5: Lyapunov spectrum for α = 0.001.
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Figure 4.6: Lyapunov spectrum for α = 0.01.
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Figure 4.7: Sum of Lyapunov Exponents for α = 0.001.
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Figure 4.8: Sum of Lyapunov exponents for α = 0.01.
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Figure 4.9: Dependence of maximum Lyapunov exponents on γ for the case

α = 0.001.
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Figure 4.10: Dependence of maximum Lyapunov exponents on γ for the case

α = 0.01.
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Figure 4.11: Time evolution of velocity distribution in x direction.
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Figure 4.12: Time evolution of standard deviations of the velocity distribution

in x direction. The results for different γ are plotted.
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Figure 4.13: Time evolution of velocity distribution in y direction.
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Figure 4.14: Time evolution of standard deviations of the velocity distribution

in y direction. The results for different γ are plotted.
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Figure 4.15: Time evolution of velocity distribution in z direction.
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Figure 4.16: Time evolution of standard deviations of the velocity distribution

in z direction. The results for different γ are plotted.
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Chapter 5

Discussion and Summary



We have studied microscopic chaos of particle trajectories, then statisti-

cal properties of the chaotic motion of charged particle in the Y-shaped model

configuration and estimated the effective resistivity induced by chaotic motion.

The velocity distributions in all direction relax to the Gaussian distribution

after a Lyapunov decorrelation time scale. By using the realized velocity dis-

tribution, we define the ensemble average,

Ā =
1

N

∑

i

A(vi)f(vi). (5.1)

We note that the distribution in the direction along the electric field (z

direction) is shifted and finite average velocity exists in z direction. However,

particles are less accelerated than free acceleration by the electric field without

magnetic field and the averaged velocity saturate after certain time. This fact

suggests the existence of collision like mechanism which produces resistivity.

We estimate the resistivity by using two formulas, one uses saturated average

velocity and the other uses the effective collision frequency. These effective

resistivity differ by a factor, which means that the relation between v̄∞ and

νeff, given by the Eq. (4.8), is violated. This is because the effective collision

mechanism induced by chaotic motion of particles is essentially different from

usual collision. We consider that effective mass or charge or electric field is

different from the case of single particle dynamics. This is reflected to the

result that collective particles is less accelerated by the electric field shown in

Fig. 4.17.

Here, we compare the derived effective resistivity to conventional Spitzer

resistivity. Spitzer calculated resistivity with taking into account the ion re-

coil in each collision and being averaged over the electron distribution. The

following equation is Spitzer resistivity for hydrogen [29],

ηSpitzer = 5.2× 10−5 Z ln Λ

T
3
2

e [eV]
[Ω ·m], (5.2)
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where Z is the ion charge number, T is plasma temperature and Λ is the

maximum impact parameter. Because the effective resistivity which we de-

rived as η ∝ 1015/n depends only on plasma density and Spitzer resistivity

is proportional to T− 3
2 , the effective resistivity becomes dominant relative to

the collisional resistivity in high temperature rarefied plasmas. Comparison

between Spitzer resistivity set Z = 1 and ln Λ = 10 and the effective resistivity

for various situations are plotted in Fig. 5.1. We summarize typical parame-

ters in each situation in Table. 5.1. For example, in solar corona, the effective

Table 5.1: Typical values of density and temperature in various situations.

Density n [m−3] Temperature T [eV]

Solar Corona 1015 102

Magnetoshpere 106 102

Fusion Plasma 1021 104

resistivity is about 106 times larger than the Spitzer resistivity at T = 100

[eV].

Finally, we discuss the effect of the plasma flow by the E ×B drift. The

E×B drift provides the inflow in y direction and outflow in x direction to the

dissipation region. Because of this flow, low energy particles penetrate into

the dissipation region and absorb the magnetic energy, then go out from the

region. Thus, steady exchange of energy from magnetic field energy to kinetic

energy occurs. By taking the MHD effect into consideration, the conservation

of the particles leads the plasma density in the dissipation region.
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We summarize the obtained results about the chaos induced collision-less

resistivity in the magnetic reconnection like Y-shaped model field.

• In the proposed magnetic field, the charged particle exhibits the chaotic

motion.

• The global time scale of the motion is determined by the escape time scale

from the dissipation region. In this time scale, effective collision induced

by chaos occurs, which is a different mechanism from usual collision in

the sense that effective force acting on collective particles differs from

that on a single particle and the collective particles is less accelerated

than single particle.

• The effective resistivity is estimated as η ∼ 1015/n [Ω · m]. Since the

effective resistivity depends on plasma density and does not depend on

plasma temperature, it becomes more dominant than collisional Spitzer

resistivity in rarefied and high temperature plasmas.

• Dependence of the effective resistivity on the parameters are studied.

The intensity of the transverse electric α field enlarges the resistivity,

while the length in x direction γ weakens the chaotic effects and the

resistivity. However, the Ohmic heating by the effective resistivity in-

creases with γ.
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Appendix A

Harris-Sheet

In section 2.1, we proposed Y-shaped magnetic field configuration to analyze

the particle dynamics in a reconnection process. This configuration has a great

similarity to well known Harris-type configuration (hereafter, it is refered to

Harris-Sheet)[30]. Here we give a brief view of Harris-Sheet.

The Harris-Sheet is one of the exact steady-state solution of the Vlasov-

Maxwell equations. The equations to be solved are

v · ∂f

∂r
+

q

m
(E + v ×B) · ∂f

∂v
= 0 (A.1)

∇ ·E =
1

ε0

∑
q

∫
fdv (A.2)

∇×B = µ0

∑
q

∫
fvdv. (A.3)

where q and m are the appropriate values for ions and electrons. The summa-

tion must be taken over species of particles (ions and electrons) with appro-

priate q and f .

If we consider E,B and f which depend only on one coordinate (say x

coordinate), then we know that the energy and the momenta conjugate to y

and z are constants of the motion. These are

W =
1

2
m(v2

x + v2
y + v2

z) + qφ(x), (A.4)
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py = mvy + qAy(x), (A.5)

pz = mvz + qAz(x), (A.6)

where A(x) is the vector potential. We assume that E and B has only an x and

z componet,respectively. Then A may be taken to have only a y component. It

is convenient to rearrange equations (A.4),(A.5) and (A.6) to give the constants

of motion

α2
1 = v2

x −
2q

m
vyAy − q2

m2
A2

y +
2q

m
φ, (A.7)

α2 = vy +
q

m
Ay, (A.8)

α3 = vz. (A.9)

There is a set (α1, α2, α3) for the ions and electrons. The solution of equa-

tion (A.1) is f = f(α1, α2, α3). Substituting this into equations (A.2) and

(A.3) gives two coupled differential equations for φ and Ay. The nature of the

solution will depend on our choice of f and the boundary conditions.

We will assume that at x = 0 the distribution functions are Maxwellian

centered about some mean velocity in the y direction.

fi,e = (
mi,e

2πT
)

3
2 N exp[−mi,e

2T
{α2

1 + (α2 − Vi,e) + α2
3}], (A.10)

where subscript i and e correspond to ions and electrons and V is the mean

velocity. If we transform the coordinate system on which the relation Ve =

−Vi = −V is satisfied and then substitute equation (A.10) into equations (A.2)

and (A.3) the following equations for the potentials φ and Ay are obtained

d2φ

dx2
= −qN

ε0

exp(
q

T
V Ay)[exp(− q

T
φ)− exp(

q

T
φ)] (A.11)

d2Ay

dx2
= −µ0qNV exp(

q

T
V Ay)[exp(− q

T
φ) + exp(

q

T
φ)] (A.12)

(A.13)
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Equation (A.11) is clearly satisfied by φ = 0. Then equation (A.12) be-

comes

dA2
y

dx2
= −2µ0qNV exp(

q

T
V Ay) (A.14)

If the boundary conditions are taken to be Ay = 0 and B = 0 at x = 0, the

solution of equation (A.14) is

Ay =
2T

qV
log cosh(

V x

cLD

), (A.15)

where LD = ( ε0T
Nq2 )

1
2 is the Debye length. From which we find the magnetic

field

B = −2
√

µ0TN tanh(

√
µ0N

T
qV x). (A.16)

From equation (A.11), we can find easily that the ion and electron densities

are given by

ni,e = N exp(
qV

T
Ay), (A.17)

which, when combined with equation (A.15) gives

ni,e =
N

cosh( V x
cLD

)
. (A.18)

Fig. A.1 gives the variation of B and n across the sheath which shows the

balance of magnetic pressure and plasma pressure.
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magnetic field
density

B n

2LD

Figure A.1: The magnetic field and density profile in a Harris-Sheet.
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